国产强伦姧在线观看无码,中文字幕99久久亚洲精品,国产精品乱码在线观看,色桃花亚洲天堂视频久久,日韩精品无码观看视频免费

      行業(yè)產(chǎn)品

      • 行業(yè)產(chǎn)品

      慧諾瑞德(北京)科技有限公司


      當前位置:慧諾瑞德(北京)科技有限公司>>光合作用>>移動式葉綠素熒光成像系統(tǒng)

      移動式葉綠素熒光成像系統(tǒng)

      返回列表頁
      參  考  價面議
      具體成交價以合同協(xié)議為準

      產(chǎn)品型號

      品       牌

      廠商性質其他

      所  在  地北京市

      聯(lián)系方式:查看聯(lián)系方式

      更新時間:2023-07-11 09:38:09瀏覽次數(shù):136次

      聯(lián)系我時,請告知來自 智能制造網(wǎng)

      經(jīng)營模式:其他

      商鋪產(chǎn)品:70條

      所在地區(qū):

      產(chǎn)品簡介

      移動式葉綠素熒光成像系統(tǒng)PlantExplorerXS是由慧諾瑞德和荷蘭PhenoVation公司聯(lián)合推出的專門針對大田、溫室、氣候室和實驗室場景的可以移動的葉綠素熒光測量系統(tǒng)

      詳細介紹

       

      移動式葉綠素熒光成像系統(tǒng)PlantExplorerXS是由慧諾瑞德和荷蘭PhenoVation公司聯(lián)合推出的專門針對大田、溫室、氣候室和實驗室場景的可以移動的葉綠素熒光測量系統(tǒng)。配備移動式升降平臺車、內置電腦的葉綠素熒光成像單元、移動電源、顯示單元和操作單元。葉綠素熒光成像單元可以升降和旋轉,既可以測量不同高度的植物冠層,也可以傾斜或水平角度測量穗(麥穗、稻穗、谷穗等)、莢果(大豆、油菜等)、果實(番茄、黃瓜、葡萄、柑橘等)、葉片或冠層。

       

      該系統(tǒng)成像面積為18x18cm,具備500萬像素高清成像,同時具備“調制”和“非調制”葉綠素熒光成像測量功能,既可以測量光合生理,也可以測量形態(tài)結構,同時配備功能強大的控制和分析軟件,且可以對大量數(shù)據(jù)進行批處理分析。該系統(tǒng),無論室內還是大田,都是進行植物表型、光合生理、植物抗逆、植物病理、育種、功能基因組、突變株篩選、種子生理/病理等研究的利器。
       

       

      功能特性

      • 大田、溫室、氣候室、實驗室進行移動式測量
      • 葉綠素熒光成像單元可以升降、旋轉
      • 葉綠素熒光成像和表型分析同步測量
      • 同時具備調制和非調制葉綠素熒光測量功能
      • 出色的高清相機(500萬像素)、高信噪比成像
      • 16位圖像格式,的成像質量
      • 光源、相機、濾光片、電腦一體化設計
      • 無可見鏡頭畸變,無需圖像校正
      • 成像范圍18 x 18cm
      • 多種測量protocol可選,允許用戶編輯設定自己的protocol,包括但不限于Fv/Fm測量、標準誘導曲線測量、暗弛豫測量、OJIP快速誘導動力學測量等等。
      • 可進行功能強大的延時成像測量
      • 自動計算熒光參數(shù)和表型參數(shù)
      • 具備圖像數(shù)據(jù)批處理分析功能
      • 提供多種功能強大的圖像分割功能
      • 對所有圖像數(shù)據(jù)均提供數(shù)據(jù)分級(用戶自定義范圍)并進行圖像化顯示,并允許對分級篩選后的數(shù)據(jù)疊加到可見光圖像上展示
      • 圖像背景、偽彩色標尺均有多種選擇
      • 允許用戶自定義多種ROI(性狀、數(shù)目、分布等)并對ROI的數(shù)據(jù)自動分析
      • 嵌入式電腦進行精確的成像、時間控制、光強控制和數(shù)據(jù)存儲
      • 功能強大的控制和分析軟件
      • 特別適合突變株篩選、育種材料/組合篩選、抗逆研究、病理研究、種子研究、果實研究、功能基因組學等

      主要技術參數(shù)

      • 基本組成:移動式升降平臺、葉綠素熒光成像單元、移動電源、顯示單元、操作單元等
      • 葉綠素熒光成像方式:“調制”測量 +“費調制”測量
      • 調制測量光:藍色LED, 450nm,半峰全寬20nm,光強4000 umol m-2 s-1 ,獨立觸發(fā)
      • Kautsky測量光:藍色LED, 450nm,半峰全寬20nm,光強4000 umol m-2 s-1
      • 飽和脈沖:藍色LED, 450nm,半峰全寬20nm,光強4000 umol m-2 s-1,獨立觸發(fā)
      • 時間分辨動力學光化光:紅光LED,660nm,光強800 umol m-2 s-1
      • 遠紅光:LED,735nm,半峰全寬20nm,35W
      • 相機:CMOS傳感器,500萬像素
      • 顏色深度:12bit
      • 標準幀率:37.5 FPS
      • 圖像格式:16bit
      • 相機光譜范圍:400~1000 nm
      • 接口:3個USB3.0,1個以太網(wǎng)口,1個HDMI接口
      • 嵌入式電腦:4核處理器,8G內存,256G固態(tài)硬盤
      • 成像面積:18cm x 18cm
      • 升降高度:0-1200mm(高度可定制)
      • 旋轉角度:-90° ~ 90°
      • 顯示單元:15.6寸觸摸顯示屏
      • 供電:35萬mAh移動電源,額定容量1260Wh,峰值功耗1000W,待機功耗35W
      • 系統(tǒng)尺寸:600mm x 720mm x 2000mm(長x寬x高)

       

       

      測量參數(shù)

      • 調制葉綠素熒光參數(shù):Fo、Fm、Fv/Fm、dFq/Fm=DF/Fm、Fs’、Fm’、Fo’、Fq’/Fm’=Fv’/Fm’、rETR、NPQ、Y(NO)、Y(NPQ)、qN、qP、qL、1-qP和1-qL等;
      • 非調制葉綠素熒光參數(shù):Fo、Fi、Fm、1-Fi/Fm、IC-Area、IC-Area/Fv、PI、Rfd、dRfd、RfdFm和RfdFt等;
      • 表型參數(shù):(植物、種子、果實的)數(shù)目、輪廓面積、長度、寬度、凸包點數(shù)、凸包面積、凸包面積/輪廓面積、最小外接圓(質心、半徑、面積)、最小外接矩形(長、寬、面積、角度、alpha)和骨架等。

       

       

       

       

       

      利用PhenoVation葉綠素熒光成像技術發(fā)表的部分文獻

      1. Casto A L, Schuhl H, Schneider D, et al. (2021) Analyzing chlorophyll fluorescence images in PlantCV. Earth and Space Science Open Archive:5. https://doi.org/10.1002/essoar..2
      2. Wang L, Liu F, Hao X, et al. (2021) Identification of the QTL-allele System Underlying Two High-Throughput Physiological Traits in the Chinese Soybean Germplasm Population. Frontiers in Genetics, https://doi.org/10.3389/fgene.2021.600444
      3. Farooq M, van Dijk A D J, Nijveen H, et al. (2021) Prior Biological Knowledge Improves Genomic Prediction of Growth-Related Traits in Arabidopsis thaliana. Frontiers in Genetics, 11:609117. doi: 10.3389/fgene.2020.609117
      4. He Y, Li Y, Yao Y et al. (2021) Overexpression of watermelon m6A methyltransferase ClMTB enhances drought tolerance in tobacco by mitigating oxidative stress and photosynthesis inhibition and modulating stress-responsive gene expression. Plant Physiology and Biochemistry, 168: 340-352.
      5. Wang W, Liu D, Qin M et al. (2021) Effects of Supplemental Lighting on Potassium Transport and Fruit Coloring of Tomatoes Grown in Hydroponics. International Journal of Molecular Sciences, 22(5): 2687 https://doi.org/10.3390/ijms
      6. Singh R R, Pajar J A, Audenaert K, et al. (2021) Induced Resistance by Ascorbate Oxidation Involves Potentiating of the Phenylpropanoid Pathway and Improved Rice Tolerance to Parasitic Nematodes. Frontiers in Plant Science, 12:713870. doi: 10.3389/fpls.2021.713870
      7. Vidak M, Lazarevic B, Petek M, et al. (2021) Multispectral Assessment of Sweet Pepper (Capsicum annuum L.) Fruit Quality Affected by Calcite Nanoparticles. Biomolecules, 11(6), 832; https://doi.org/10.3390/biom
      8. Lazarevic B, Satovic Z, Nimac A, et al. (2021) Application of Phenotyping Methods in Detection of Drought and Salinity Stress in Basil (Ocimum basilicum L.). Frontiers in Plant Science, 12:629441. doi: 10.3389/fpls.2021.629441
      9. Romero-Perez A, Ameye M, Audenaert K, et al. (2021) Overexpression of F-Box Nictaba Promotes Defense and Anthocyanin Accumulation in Arabidopsis thaliana After Pseudomonas syringae Infection. Frontiers in Plant Science, 12:692606. doi: 10.3389/fpls.2021.692606
      10. Meng L, Mestdagh H, Ameye M, et al. (2021) Phenotypic variation of Botrytis cinerea Isolates is influenced by spectral light quality. Frontiers in Plant Science, 11:1233. doi: 10.3389/fpls.2020.01233
      11. De Zutter N, Ameye M, Debode J, et al. (2021) Shifts in the rhizobiome during consecutive in planta enrichment for phosphate-solubilizing bacteria differentially affect maize P status. Microbial Biotechnology, doi:10.1111/1751-7915.13824
      12. Stambuk P, Sikuten I, Preiner D, et al. (2021) Screening of Croatian Native Grapevine Varieties for Susceptibility to Plasmopara viticola Using Leaf Disc Bioassay, Chlorophyll Fluorescence, and Multispectral Imaging. Plants, 10, 661. https://doi.org/10.3390/plants
      13. Tan J, de Zutter N, de Saeger S, et al. (2021) Presence of the Weakly Pathogenic Fusarium poae in the Fusarium Head Blight Disease Complex Hampers Biocontrol and Chemical Control of the Virulent Fusarium graminearum Pathogen. Frontiers in Plant Science, https://doi.org/10.3389/fpls.2021.641890
      14. Flood P, Theeuwen T, Schneeberger K, Keizer P, Kruijer W, et al. (2020) Reciprocal cybrids reveal how organellar genomes affect plant phenotypes. Nature Plants, 10.1038/s41477-019-0575-9ff. ffhal-v2f
      15. Velivelli S L S, Czymmek K J, Li H, Shaw J B, Buchko G W, Shah D M. (2020) Antifungal symbiotic peptide NCR044 exhibits unique structure and multifaceted mechanisms of action that confer plant protection. PNAS, DOI: 10.1073/pnas.2003526117
      16. Bhatnagar N, Pandey S. (2020) Heterotrimeric G-Protein Interactions Are Conserved Despite Regulatory Element Loss in Some Plants. Plant Physiology, DOI: https://doi.org/10.1104/pp.20.01309
      17. Venneman J, Vandermeersch L, Walgraeve C et al. (2020) Respiratory CO2 Combined With a Blend of Volatiles Emitted by Endophytic Serendipita Strains Strongly Stimulate Growth of Arabidopsis Implicating Auxin and Cytokinin Signaling. Frontiers in Plant Science, https://doi.org/10.3389/fpls.2020.544435
      18. Tan J, Ameye M, Landschoot S et al. (2020) At the scene of the crime: New insights into the role of weakly pathogenic members of the fusarium head blight disease complex. Molecular Plant Pathology, DOI: 10.1111/mpp.12996
      19. Prinzenberg A E, Campos-Dominguez L, Kruijer W, Harbinson J, Aarts M G M. (2020) Natural variation of photosynthetic efficiency in Arabidopsis thaliana accessions under low temperature conditions. Plant Cell & Environment, 1–14. https://doi.org/10.1111/pce.13811
      20. Zhang H, Chen Y, Niu Y, Zhang X, Zhao J, Sun L, Wang H, Xiao J, Wang X. (2020) Characterization and fine mapping of a leaf yellowing mutant in common wheat. Plant Growth Regulation, https://doi.org/10.1007/s10725-020-00633-0
      21. Jin X, Zarco-Tejada P, Schmidhalter U, Reynolds M P et al. (2020) High-throughput estimation of crop traits: A review of ground and aerial phenotyping platforms. IEEE Geoscience and Remote Sensing Magazine, DOI: 10.1109/MGRS.2020.2998816
      22. Sheng X-G, Branca F, Zhao Z-Q et al. (2020) Identification of Black Rot Resistance in a Wild Brassica Species and Its Potential Transferability to Cauliflower. Argonomy, 10: 1400. doi:10.3390/agronomy
      23. Pennisi G, Blasioli S, Cellini A, Maia L, Crepaldi A, Braschi I, Gianquinto G. (2019). Unraveling the Role of Red:Blue LED Lights on Resource Use Efficiency and Nutritional Properties of Indoor Grown Sweet Basil. Frontiers in plant science, 10, 305. doi:10.3389/fpls.2019.00305
      24. Pennisi G, Orsini F, Blasioli S, Cellini A et al. (2019) Resource use efficiency of indoor lettuce (Lactuca sativa L.) c*tion as affected by red:blue ratio provided by LED lighting. Scientific Reports, 9, 14127
      25. Van Es S W, van der Auweraert E B, Silveira S R, Angenent G C, van Dijk A D J, Immink R G H. (2019) Comprehensive phenotyping reveals interactions and functions of Arabidopsis thaliana TCP genes in yield determination. The Plant Journal, doi: 10.1111/tpj.14326
      26. Köhl J, Goossen-van de Geijn H, Groenenboom-de Haas L, et al. (2019) Stepwise screening of candidate antagonists for biological control of Blumeria graminis f. sp. tritici. Biological Control, 136: 104008
      27. Mohd Nadzir M M, Vieira Lelis F M, Thapa B, Ali A, Visser R G F, van Heusden A W, van der Wolf J M. (2019) Development of an in vitro protocol to screen Clavibacter michiganensis subsp. michiganensis pathogenicity in different Solanum species. Plant Phathology, 68(1): 42-48
      28. Sall K, Dekkers B J W, Nonogaki M, Katsuragawa Y, Koyari R, Hendrix D, Willems L A J, Bentsink L, Nonogaki H. (2019) DELAY OF GERMINATION  1LIKE  4 acts as an inducer of seed reserve accumulation. The Plant Journal, 100: 7-19.
      29. Li H, Velivelli S L S, Shah D M. (2019) Antifungal Potency and Modes of Action of a Novel Olive Tree Defensin Against Closely Related Ascomycete Fungal Pathogens. Molecular Plant-Microbe Interactions. 32(12): 1646-1664.
      30. Prinzenberg A E, Viquez-Zamora M, Harbinson J, Lindhout P, van Heusden S. (2018) Chlorophyll fluorescence imaging reveals genetic variationand loci for a photosynthetic trait in diploid potato. Physiologia Plantarum, 164: 163-175.
      31. Van Rooijen R, Harbinson J, Aarts M G M. (2018) Photosynthetic response to increased irradiance correlates to variation in transcriptional response of lipidremodeling and heatshock genes. Plant Direct, 2(7): e00069
      32. Van Bezouw R F H M, Keurentjes J J B, Harbinson J, Aarts M G. (2018) Converging phenomics and genomics to study natural variation in plant photosynthetic efficiency. Plant Journal, 97(1): 112-133.
      33. Domazakis E, Wouters D, Visser R G F, Kamoun S, Joosten M H A J, Vleeshouwers V G A A. (2018) The ELR-SOBIR1 Complex Functions as a Two-Component Receptor-Like Kinase to Mount Defense Against Phytophthora infestans. Molecular Plant-Microbe Interactions, 31(8): 795-802.
      34. Bazakos C, Hanemian M, Trontin C, Jimenez-Gomez J M, Loudet O. (2017) New Strategies and Tools in Quantitative Genetics: How to Go from the Phenotype to the Genotype. Annual Review of Plant Biology, 68:435-455
      35. Van Rooijen R, Kruijer W, Boesten R, van Eeuwijk F A, Harbinson J, Aarts M G M. (2017) Natural variation of YELLOW SEEDLING1 affects photosynthetic acclimation of Arabidopsis thaliana. Nature Communications, 8: 1421
      36. Flood P J, Kruijer W, Schnabel S K, van der Schoor R, Jalink H, Snel J F H, Harbinson J, Aarts M G M. (2016) Phenomics for photosynthesis, growth and reflectance in Arabidopsis thaliana reveals circadian and long-term fluctuations in heritability. Plant Methods, 12: 14. https://doi.org/10.1186/s13007-016-0113-y
      37. Mancarella S, Orsini F, van Oosten M J, SAnoubar R, Stanghellini C, Kondo S, Gianquinto G, Maggio A. (2016) Leaf sodium accumulation facilitates salt stress adaptation and preserves photosystem functionality in salt stressed Ocimum basilicum. Environmental and Experimental Botany, 130: 162-173.
      38. Virlet N, Sabermanesh K, Sadeghi-Tehran P, Hawkesford M J. (2016) Field Scanalyzer: An automated robotic field phenotyping platform for detailed crop monitoring. Functional Plant Biology, 44(1): 143-153.
      39. Gorbe Sanchez E, Heuvelink E, de Gelder A, Stanghellini C. (2015) New Non-invasive Tools for Early Plant Stress Detection. Procedia Environmental Sciences, 29: 249-250.
      40. Kastelein P, Krijger M, Czajkowski R, van der Zouwen P S, van der Schoor R, Jalink H, van der Wolf J M. (2014) Development of Xanthomonas fragariae populations and disease progression in strawberry plants after sprayinoculation of leaves. Plant Pathology, 63(2): 255-263.
      41. Harbinson J, Prinzenberg A E, Kruijer W, Aarts M G M. (2012) High throughput screening with chlorophyll ?uorescence imaging and its use in crop improvement. Current Opinion in Biotechnology, 23:221

      其他推薦產(chǎn)品更多>>

      感興趣的產(chǎn)品PRODUCTS YOU ARE INTERESTED IN

      智能制造網(wǎng) 設計制作,未經(jīng)允許翻錄必究 .? ? ? Copyright(C)?2021 http://towegas.com,All rights reserved.

      以上信息由企業(yè)自行提供,信息內容的真實性、準確性和合法性由相關企業(yè)負責,智能制造網(wǎng)對此不承擔任何保證責任。 溫馨提示:為規(guī)避購買風險,建議您在購買產(chǎn)品前務必確認供應商資質及產(chǎn)品質量。

      會員登錄

      ×

      請輸入賬號

      請輸入密碼

      =

      請輸驗證碼

      收藏該商鋪

      登錄 后再收藏

      提示

      您的留言已提交成功!我們將在第一時間回復您~