国产强伦姧在线观看无码,中文字幕99久久亚洲精品,国产精品乱码在线观看,色桃花亚洲天堂视频久久,日韩精品无码观看视频免费

      鼎鑾(上海)機(jī)電設(shè)備有限公司

      免費會員
      您現(xiàn)在的位置: 鼎鑾(上海)機(jī)電設(shè)備有限公司>>秒報價>> Funke秒報價 Flokal OV140 P/N 9705011 加熱器
      Funke秒報價 Flokal OV140 P/N 9705011 加熱器
      參考價: 面議
      具體成交價以合同協(xié)議為準(zhǔn)
      • Funke 產(chǎn)品型號
      • COEL 品牌
      • 其他 廠商性質(zhì)
      • 上海市 所在地

      訪問次數(shù):441更新時間:2015-12-16 13:44:06

      聯(lián)系我們時請說明是智能制造網(wǎng)上看到的信息,謝謝!
      免費會員·11年
      聯(lián)人:
      張經(jīng)理

      掃一掃訪問手機(jī)商鋪

      產(chǎn)品簡介
      Funke TPL 00-L-30-22 Nr:454 817 熱交換器
      Funke TPL01-L-22-11 熱交換器
      秒報價 Flokal OV140 P/N 9705011 加熱器
      產(chǎn)品介紹

      Flokal    OV140  P/N 9705011    加熱器
      Flovex    silver T/OTT 8061-A-4(with plastic covers)  ST3.8061.A40000    熱交換器
      FLOVEX S.p.A.    OTT 8061-A-4  Nr: ST3.8061.A40000    加熱器
      FLOWGUARD    FG-10-200-FPM-SS-A-1/2 BSP    減壓閥
      FLOWSERVE    510SI-15-W2DSG-00F0-000(The built-in language is German)    閥門定位器
      FLOWSERVE    S150D 90°    氣壓缸
      FLOWSERVE    41-E5N-STD  KM71- IP Transmitter for APEX7000 series    閥門定位器
      FLOWSERVE    S125D 90°    氣壓缸
      FLOWSERVE    F5GU-MEC420-23-FS9DA-Z    閥門定位控制器
      FLOWSERVE    S050M    氣壓缸
      FLOWSERVE    NXCLU2M3-19-00200    感應(yīng)傳感器
      FLOWSERVE    NH52M 24VDC    油壓傳動閥
      FLOWSERVE    Ident Nr.59 41 30C    止回閥
      flowtec    KHN7314 DN80 (3")    球閥
      flowtec    KHN7314 DN65 (2 1/2")    球閥
      flowtec    KHN7314 DN40 (6/4")    球閥
      flowtec    KHN7314 DN25 (1")    球閥
      flucom    B30-27C-28H    電磁閥線圈
      Fluid Automation    10236;05-562MB02-60-24VDC-1,8W 5/2W,DIR,NC,FLANSCH,NW    油壓傳動閥
      Fluid Automation Systems GmbH    05-562MB02-60-24VDC-1.8W    油壓傳動閥
      FLUID TEAM    3-fach Reihenblock 32/25/32   9423058    油壓傳動閥
      FLUID TEAM    ZEPDR3-06-315-1-24V    油壓傳動閥
      FLUID TEAM    EEPDRDS3-05-115-4-24V    油壓傳動閥
      FLUID TEAM    EEPDRS3-08-210-2-24V    油壓傳動閥
      FLUID TEAM    EPDBDGA-05/06-40-1-24V    油壓傳動閥
      FLUID-TEAM    EEPDRDM3-05-75-3-12V    油壓傳動閥
      FLUID-TEAM    ZEPDR3-06-115-1-24V    油壓傳動閥
      FLUID-TEAM    ZEPDR3-06-210-1-24V    油壓傳動閥
      FLUID-TEAM    MDFVA-06-SCCA-LWN    油壓傳動閥
      FLUID-TEAM    VB-3A    信號放大器
      FLUITEN    GLRD-GTED 180 c1zd 72 v2 v2 vee    機(jī)械密封件
      Fluitronics    1AR100-P-20S-FJ    油壓傳動閥
      FLUITRONICS GMBH    PZ/03-500-3.39/II    

      ment torque  T Dis  (approx.
      values)
      Function system:
      Full?disengagement (F)
      T Dis
      Nm
      A
      in.lb
      Nm
      B
      in.lb
      Nm
      C
      in.lb
      Axial misalignment
      Max.
      values
      mm
      Angular misalignment
      Max.
      values
      °
      Lateral misalignment
      Max.
      values
      mm
      Axial spring stiffness C a N/mm
      Lateral spring stiffness C l N/mm
      Torsional rigidity C T
      Nm/arcmin
      in.lb/arc-
      min
      Moment of inertia J
      kgcm 2
      in.lb.s 2 .10 -3
      Hub material
      Max. speed  b) n Max rpm
      Bellows material highly flexible stainless steel
      Protection element material Hardened steel
      Approx. weight m
      kg
      lb
      Max. permitted temperature
      °C -30 to +100 (bonded)
      -30 to +300
      (welded)
      F -22 to +212 (bonded)秒報價 Flokal    OV140  P/N 9705011    加熱器
      -22 to +572
      (welded)
      Technical data
      b) If you have more stringent requirements, please contact WITTENSTEIN alpha
      406
      1.5 2 4.5 10 15 30 60 80 150 200 300 500 800 1500
      A A B A B A B A B A B A B A B A B A B A B A B A A
      42 46 51 57 65 65 74 75 82 87 95 102 112 115 127 116 128 128 140 139 153 163 177 190 223
      42 46 51 57 65 65 74 75 82 87 95 102 112 117 129 118 130 131 143 142 156 167 181 201 232
      11 13 16 16 22 27 31 35 35 40 42 51 48 67
      3.5 4 5 5 6.5 7.5 9.5 11 11 12.5 13 17 18 22.5
      6 8 10 15 17 19 23 27 27 31 39 41 2x48 2x55
      0.7 0.8 0.8 1.2 1.5 1.5 1.7 1.9 1.9 2.2 2.2 2.2 2.2 3.0
      12 13 15 17 19 24 28 31 31 35 35 45 50 63
      11.5 12 14 16 19 22 29 31 30 33 35 43 54 61
      3 - 9 4-12 5-14 6-20 10-26 12-30 15-32 19-42 19-42 24-45 30-60 35-60 40-75 50-80
      23 29 35 45 55 65 73 92 92 99 120 135 152 174
      24 32 42 51.5 62 70 83 98 98 117 132 155 177 187
      19 25 32 40 49 55 66 81 81 90 110 123 134 157
      9.1 12.1 14.1 20.1 21.1 24.1 32.1 36.1 36.1 42.1 58.1 60.1 60.1 68.1
      Accessories
      Couplings
      a)  Tolerance for shaft/hub connection 0.01-0.05 mm.
      L 1F  , L 9F  , D 3F = Full disengagement version (F)
      Series
      Length options
      (see order codes)
      Overall length L 1 mm
      Overall length F L 1F mm
      Fit length  a) L 2 mm
      Distance L 3 mm
      Distance between centers L 4 mm
      Actuation path L 8 mm
      Distance L 9 mm
      Distance (F) L 9F mm
      Bore diameter
      from???to???H7
      D 1/2 mm
      Outer diameter of
      actuation?ring
      D 3 mm
      Outer diameter of
      actuation?ring F
      D 3F mm
      Outer diameter of hub D 5 mm
      Max. internal diameter D 7 mm
      Your benefits:
      · Certified disengagement mechanism in the event of overload
      · Pre-set disengagement torque
      · Compley backlash free
      · Fatigue endurable and maintenance free
      · Compensation of shaft misalignments
      · Small installation space despite protection element
      · Radial mounting via clamping screw
      Optional:
      · Bores with key / involute
      · Other designs秒報價 Flokal    OV140  P/N 9705011    加熱器
      Dimensions
      * Bore for torque adjusting wrench, see Page 403
      407
      15 30 60 150 200 300 500 800 1500 2500
      A B A B A B A B A B A B A B A A A
      5-10 10-25 10-30 20-70 30-90 100-200 80-200 400-650 650-850 1500-2000
      45-89 89-222 89-266 177-620 266-797 885-1770 708-1770 3540-5753 5753-7523 13275-17700
      8-20 20-40 25-80 45-150 60-160 150-240 200-350 500-800 700-1200 2000-2500
      71-177 177-354 222-708 399-1328 531-1416 1328-2124 1770-3098 4425-7080 6195-10620 17700-22125
      - - - 80-200 140-280 220-400 300-500 600-900 1000-1800 2300-2800
      708-1770 1239-2478 1947-3540 2655-4425 5310-7965 8850-15930 20355-24780
      7-15 8-20 20-40 20-60 80-140 120-180 60-150 200-400 1000-1250 1400-2200
      62-133 71-177 177-354 177-531 708-1239 1062-1593 531-1328 1770-3540 8850-11063 12390-19470
      - 16-30 30-60 40-80 130-200 160-300 100-300 450-800 1250-1500 1800-2700
      142-266 266-531 354-706 1151-1770 1416-2655 885-2855 3982-7080 11063-13275 15930-23895
      - - - 80-150 - - 250-500 - - -
      708-1328 2213-4425
      1 2 1 2 1.5 2 2 3 2 3 2.5 3.5 2.5 3.5 3.5 3.5 3.5
      1 1.5 1 1.5 1 1.5 1 1.5 1.5 2 1.5 2 2 2.5 2.5 2.5 2.5
      0.15 0.20 0.20 0.25 0.20 0.25 0.20 0.25 0.25 0.30 0.25 0.30 0.30 0.35 0.35 0.35 0.35
      25 15 50 30 72 48 82 52 90 60 105 71 70 48 100 320 1150
      475 137 900 270 1200 380 1550 435 2040 610 3750 1050 2500 840 2000 3600 6070
      5.8 4.4 11 8.1 22 16 51 32 56 41 122 102 148 145 227 379 989
      51 39 100 72 196 142 451 283 492 360 1081 901 1313 1287 2008 3357 8753
      1.0 1.5 2.8 3.0 7.5 8.0 19 20 28 30 55 60 110 128 200 420 2570
      0.85 1.3 2.4 2.6 6.4 6.8 16 17 24 26 47 51 94 109 170 357 2185
      3000 2000 1000
      0.3 0.4 1.2 2.3 3.0 5.0 6.5 9.0 16.3 35
      0.66 0.88 2.65 5.07 6.61 11.0 14.3 19.8 35.9 77.2
      TL3 – Torque limiter
      Series
      Length options
      (see order codes)
      Adjustment range from
      min. to max. disengage-
      ment torque  T Dis  (approx.
      values)
      Function systems: single
      position (W), multi-position
      (D) and load holding (G)
      T Dis
      Nm
      A
      in.lb
      Nm
      B
      in.lb
      Nm
      C
      in.lb
      Adjustment range from
      min. to max. disengage-秒報價 Flokal    OV140  P/N 9705011    加熱器
      ment torque  T Dis  (approx.
      values)
      Function system:
      Full?disengagement (F)
      T Dis
      Nm
      A
      in.lb
      Nm
      B
      in.lb
      Nm
      C
      in.lb
      Axial misalignment
      Max.
      values
      mm
      Angular misalignment
      Max.
      values
      °
      Lateral misalignment
      Max.
      values
      mm
      Axial spring stiffness C a N/mm
      Lateral spring stiffness C l N/mm
      Torsional rigidity C T
      Nm/arcmin
      in.lb/arcmin
      Moment of inertia J
      kgcm 2
      in.lb.s 2 .10 -3
      Max. speed  b) n Max rpm
      Hub material Steel
      Bellows material highly flexible stainless steel
      Protection element material Hardened steel
      Approx. weight m
      kg
      lb
      Max. permitted temperature
      °C -30 to +100 (bonded) -30 to +300 (welded)
      F -22 to +212 (bonded) -22 to +572 (welded)
      Technical data
      b) If you have more stringent requirements, please contact WITTENSTEIN alpha
      408
      15 30 60 150 200 300 500 800 1500 2500
      A B A B A B A B A B A B A B A A A
      62 69 72 80 84 94 93 105 99 111 114 128 123 136 151 175 246
      62 69 72 80 84 94 93 105 102 114 117 131 127 140 151 184 252
      19 22 27 32 32 41 41 49 61 80
      1.5 1.5 1.7 1.9 2.2 2.2 2.2 2.2 3 3
      13 16 18 19 19 23 25 31 30 34
      13 14 17 18 17 20 22 20 26 31
      2.8 3.5 3.5 4 4 5.3 5.3 6.4 7.5 10
      10-22 12-23 12-29 15-37 20-44 25-56 25-60 30-60 35-70 50-100
      55 65 73 92 99 120 135 152 174 243
      62 70 83 98 117 132 155 177 187 258
      49 55 66 81 90 110 123 133 157 200
      Accessories
      Couplings
      a) Tolerance for shaft/hub connection 0.01-0.05 mm.
      L 1F  , L 9F  , D 3F = Full disengagement version F
      Series
      Length options
      (see order codes)
      Overall length (without L S ) L 1 mm
      Overall length F L 1F mm
      Fit length  a) L 2 mm
      Actuation path L 8 mm
      Distance L 3 mm
      Distance F L 9F mm
      Screw head length L S mm
      Bore diameter
      from???to???H7
      D 1/2 mm
      Outer diameter
      of?actuation?ring
      D 3 mm
      Outer diameter
      of?actuation?ring F
      D 3F mm
      Outer diameter of hub D 5 mm
      Your benefits:
      · Certified disengagement mechanism in the event of overload
      · Pre-set disengagement torque
      · Compley backlash free
      · Fatigue endurable and maintenance free
      · Compensation of shaft misalignments
      · Small installation space despite protection element
      · Axial mounting via conical clamping hub
      Optional:
      · Bores with key / involute
      · Other designs
      Dimensions
      * Bore for torque adjusting wrench, see Page 403
      409
      alpheno ?
      HG +
      SP +
      VDH +
      Shrink discs – Always well connected
      Harmony in perfection:
      Our shrink discs are ideally adapted
      to your extremely compact hollow
      shaft or mounted shaft connection.
      This means maximum performance
      of your drive!
      The best accessories for the best
      gearhead in order to achieve full
      performance.
      Your benefits:
      · Technically and geometrically matched
      · Compact version
      · Simple mounting and removal
      · Backlash-free, positive connection
      · High true-running accuracy
      · Two-part design
      Your benefits
      · Reliable and safe transmission
      · Huge installation space reduction
      · Multiple reuse
      · High dynamism and accuracy
      · Extremely smooth-running
      · Corrosion resistant design
      410
      d D A H* H2* J [ kgcm 2 ]
      SP + / SPK + / HG + 060
      SD 018x044 S2 SD 018x044 N2 SD 018x044 E2
      18 44 30 15 19 0,252
      20000744 20048496 20048491
      SP + / SPK + / HG + 075
      SD 024x050 S2 SD 024x050 N2 SD 024x050 E2
      24 50 36 18 22 0,729
      20001389 20047957 20043198
      SP + / SPK + / HG + 100
      SD 036x072 S2 SD 036x072 N2 SD 036x072 E2
      36 72 52 22 27,5 3,94
      20001391 20048497 20035055
      SP + / SPK + / HG + 140
      SD 050x090 S2 SD 050x090 N2 SD 050x090 E2
      50 90 68 26 31,5 11,1
      20001394 20048498 20047937
      SP + / SPK + / HG + 180
      SD 068x115 S2 SD 068x115 N2 SD 068x115 E2
      68 115 86 29 34,5 31,1
      20001396 20048499 20048492
      d D A H* H2* J [ kgcm 2 ]
      VDH + / VDHe 040
      SD 024x050 S2 SD 024x050 N2 SD 024x050 E2
      24 50 36 18 22 0,729
      20001389 20047957 20043198
      VDH + / VDHe 050
      SD 030x060 S2V SD 030x060 N2 SD 030x060 E2
      30 60 44 20 24 1,82
      20020687 20047934 20047885
      VDH + / VDHe 063
      SD 036x072 S2V SD 036x072 N2V SD 036x072 E2
      36 72 52 22 27,5 3,94
      20020688 20047530 20035055
      VDH + 080
      SD 050x090 S2V SD 050x090 N2V SD 050x090 E2
      50 90 68 26 31,5 11,1
      20020689 20047935 20047937
      VDH + 100
      SD 062x110 S2V SD 062x110 N2 SD 062x110 E2
      62 110 80 29 34,5 27
      20020690 20047927 20047860
      Accessories
      Shrink disc
      Quick shrink disc selection
      Recommendation for the load shaft:
      Tolerance h6
      Surface roughness  ≤ Rz 16
      Minimum yield strength Rp 0.2 ≥ 385 N/mm 2
      The shrink disc is not included in the scope of
      delivery of the gearhead. Therefore, it must be
      ordered separay (for the V-Drive gearhead
      type,?this is possible in the order code).
      Gearhead type Order code/Article code
      Standard Nickel plated Stainless steel
      Order code
      Article code
      Order code
      Article code
      Order code
      Article code
      Order code
      Article code
      Order code
      Article code
      * Apply for the unclamped state.
      Shrink discs suitable for alpheno ? and PKF gearheads upon request.
      Gearhead type Order code/Article code
      Standard Nickel plated Stainless steel
      Order code
      Article code
      Order code
      Article code
      Order code
      Article code
      Order code
      Article code
      Order code
      Article code
      * Apply for the unclamped state.
      One shrink disk per gearhead is sufficient. Please refer to the operating instructions for information on correct shrink disc installation.
      The instructions are enclosed with the order.
      Mounting / operating manual at www.wittenstein-alpha.de/en/download
      411
      Flange shafts – Flexible in design
      More design freedom for the output:
      Our flange shafts provide you with
      made to measure output shafts, es-
      pecially adapted for TP + , TPK + , TK +
      and TPC + flange gearheads:
      · Flexible shaft diameter
      · Can be adapted to your output
      components
      · Customized options possible
      Your benefits
      · Geometrically adapted to the gearhead
      · Choice of shaft diameters
      · Can also be combined with couplings
      · Other options available on request
      (material, geometry)
      Your benefits
      · Simple selection
      · Greater design freedom
      · A flexible solution for your drive
      412
      Accessories
      Flange
      shafts
      Quick flange shaft selection
      Technical characteristics:
      Yield strength R p : ≤ 245N/mm2
      Tolerance k6
      Surface roughness R Z : ≤ 25
      The flange shaft and fastening screws are not
      included with the gearhead.
      For more precise information on mounting, please
      see the gearhead operating instructions.
      Schematic diagram:
      D1 = Shaft diameter
      L1 = Effective shaft length
      L2 = Overall length
      Gearhead
      TP + / TPK + /
      TK + / TPC +
      Diam. of shaft
      D1 option A
      [mm]
      Order code Diam. of shaft
      D1 option B
      [mm]
      Order code Effective shaft
      length L1
      [mm]
      Overall length
      L2
      [mm]
      004 MF 16 FLW TP 004-S-016-023-033 22 FLW TP 004-S-022-023-033 23 033
      010 MF 22 FLW TP 010-S-022-030-041 32 FLW TP 010-S-032-030-041 30 041
      010 MA 22 FLW TP 010-A-022-042-065 32 FLW TP 010-A-032-042-065 42 065
      025 MF 32 FLW TP 025-S-032-038-051 40 FLW TP 025-S-040-038-051 38 051
      025 MA 32 FLW TP 025-A-032-050-079 40 FLW TP 025-A-040-050-079 50 079
      050 MF 40 FLW TP 050-S-040-038-054 55 FLW TP 050-S-055-038-054 38 054
      050 MA 40 FLW TP 050-A-040-062-095 55 FLW TP 050-A-055-062-095 62 095
      110 MF 55 FLW TP 110-S-055-052-073 75 FLW TP 110-S-075-052-073 52 073
      110 MA 55 FLW TP 110-A-055-081-119 75 FLW TP 110-A-075-081-119 81 119
      300 MF 90 FLW TP 300-S-090-123-150 123 150
      300 MA 90 FLW TP 300-A-090-123-150 090 150
      413
      416
      418
      422
      424
      426
      428
      432
      438
      Information
      Quick gearhead selection 
      Gearhead – Detailed sizing
      Hypoid – Detailed sizing
      Modular system matrix “Output type”
      V-Drive – Detailed sizing
      Coupling – Detailed sizing
      Glossary
      Order information
      414
      Information
      Always there for you!
      Technical support:
      . +49 7931 493-10800
      Information
      Quick  gearhead selection
      416
      alpha
      Information
      Quick  gearhead selection
      a) recommended by WITTENSTEIN alpha. Please contact us if you require further assistance.
      The quick gearhead selection feature is designed exclusively for calculating gearhead sizes approximay. Quick selection is not
      a substitute for the detailed sizing feature! To select a specific gearhead, proceed as described in the Chapter ”Gearhead –
      Detailed sizing“ or ”V-Drive – Detailed sizing“. For quick, convenient and reliable gearhead selection, we recommend using
      WITTENSTEIN alpha’s cymex ? sizing software.
      Cyclic operation S5
      Valid for
      ≤ 1000 cycles/hour
      Duty cycle
      < 60 % and < 20 min. a)
      1. Calculate the max. motor acceleration
      torque using motor data
      T MaxMot [Nm] or [in.lb]
      2. Calculate the max. available
      acceleration torque at the gearhead
      output T 2b [Nm] or [in.lb]
      T 2b = T MaxMot · i
      3. Compare the max. available accelera-
      tion torque T 2b [Nm] or [in.lb] with the
      max. permissible acceleration torque
      T 2B [Nm] or [in.lb] at the gearhead out-
      put
      T 2b ≤ T 2B
      4. Compare the bore hole diameter on
      the clamping hub (see technical data
      sheets)
      5. Compare the motor shaft length
      L Mot [mm] or [in] with the min. and
      max. dimensions in the corresponding
      dimension sheet
      Continuous operati-
      on S1
      Duty cycle
      ≥ 60 % or ≥ 20 min. a)
      1. Select cyclic operation S5
      2. Calculate the rated motor torque
      T 1NMot [Nm] or [in.lb]
      3. Calculate the previous rated torque
      at the gearhead output T 2n [Nm] or
      [in.lb]
      T 2n = T 1NMot · i
      4. Compare the previous rated torque
      T 2n [Nm] or [in.lb] with the permissible
      nominal torque T 2N [Nm] or [in.lb] at the
      gearhead output
      T 2n ≤ T 2N
      5. Calculate the previous input speed
      n 1n [rpm]
      6. Compare the previous input speed
      n 1n [rpm] with the permissible rated
      speed n 1N [rpm]
      n 1n ≤ n 1N
      417
      Calculate the duty cycle ED
      ED ≤ 60 %
      and ED ≤ 20 min.
      ED > 60 % or
      ED > 20 min
      Cyclic operation:
      Use standard gearhead:
      Continuous operation: recommended
      Use SP + HIGH SPEED or LP +
      (otherwise consult us)
      no
      yes
      Gearhead – Detailed sizing
      Calculate the number of cycles Z h [1/h]
      a) see diagram 1 “Shock factor”
      ED =
      (t b + t c + t d )
      (t b + t c + t d + t e )
      · 100 [%]
      ED = t b + t c + t d [min]  a)
      Z h a) =
      3600 [s/h]
      (t b + t c + t d + t e )
      Calculate the shock factor f s
      (see diagram 1)
      Calculate the max. acceleration torque
      at the output including the shock factor
      T 2b,fs [Nm] or [in.lb]
      T 2b, fs < T 2B
      f s is dependent on Z h (diagram 1)
      T 2b = depends on the application
      T 2b, fs = T 2b · f s
      Select a larger
      gearhead
      Calculate the max. output speed n 2max
      [rpm] (see diagram 2)
      Calculate the ratio i
      n 1max < n 1Max
      Smaller
      ratio i
      Calculate the EMERGENCY STOP
      torque T 2not [Nm] or [in.lb]
      T 2not < T 2Not
      Select a
      larger gearhead
      n 2max depends on the application
      i depends on
      n – required output speed (for the application)
      – reasonable input speed (gearhead/motor)
      n 1max = n 2max · i
      n 1max ≤ n 1Mot max
      T – consisting of corresponding output and input
      torque
      λ – from resulting inertia ratio.
      Guide value: 1 ≤  λ ≤ 10
      (see alphabet for calculation)
      T 1b = T 2b ·
      1
      i
      T 1b ≤ T Mot max
      1
      η
      ·
      T 2not depends on the application
      Please refer to the relevant technical data for information on
      the max. permissible characteristic values for your gearhead.
      To design a V-Drive gearhead, see Chapter “V-Drive – Detailed
      sizing”.
      yes
      no
      no
      Cyclic operation  S5 and continuous operation  S1
      418
      alpha
      Information
      Calculate the average output torque T 2m
      [Nm] or [in.lb] (see diagram 2)
      n 1m < n 1N
      Select a motor
      T 2max (Motor) ≤ T 2B
      Smaller
      ratio i
      Limit
      motor current
      Calculate the average input speed n 1m
      [rpm] (see diagram 2)
      Compare
      clamping hub with motor
      shaft diameter
      Select
      other motors
      or gearheads
      (contact us)
      Compare
      motor shaft length with
      min./max. dimensions in the
      gearhead dimension
      sheet
      Select a larger
      gearhead
      Select
      other motors
      or gearheads
      (contact us)
      Calculate the bearing
      load and bearing lifespan
      (see Chapter “Bearing lifespan“)
      T 2m =
      |n 2b | · t b · |T 2b | 3 + … + |n 2n | · t n · |T 2n | 3
      |n 2b | · t b + … + |n 2n | · t n
      3
      n 2m =
      |n 2b | · t b + ... + |n 2n | · t n
      t b + ... + t n
      incl. pause
      time
      n 1m = n 2m · i
      D W, Mot ≤ D clamping hub
      The motor shaft must be inserted far
      enough into the clamping hub.
      1. The motor shaft must protrude
      far enough into the clamping hub
      without making contact.
      T 2max (Motor) = T 1max (Motor) · i · η gearhead
      2. The gearhead should not be
      damaged when the motor operates
      at full load, limit the motor current
      if necessary.
      Diagram 2
      Standard collective load at output
      If the load on the gearhead in continuous operation S1 is less than or equal to the rated
      torque T 2N , the gearing is. At input speeds less than/equal to the rated speed n 1N , the
      temperature of the gearhead will not exceed 90 °C under average ambient conditions.
      Diagram 1
      Large number of cycles combined with short acceleration times may cause the drive
      train to vibrate. Use the shock factor f s to include the resulting excess torque values
      in calculations.
      no
      no
      Number of cycles per hour
      Shock factor
      Torque Speed
      Cycle duration
      Time
      Time
      Emer
      Emer
      (Start/Stop/Event)
      no
      no
      no
      yes
      yes
      yes
      yes
      yes
      T 2m <T 2N
      419
      F 2am
      F 2rm
      Gearhead – Detailed sizing
      Bearing lifespan  L h10 (output bearing)
      M 2kmax ≤ M 2KMax
      F 2rmax ≤ F 2RMax
      F 2amax ≤ F 2AMax
      Calculate the average axial
      and radial force F am , F rm [N] or [lb f ]
      ≤ f
      x 2 > 0
      M 2km =
      F 2am · y 2 + F 2rm · (x 2 + z 2 )  a)
      W
      M 2kmax =
      F 2amax · y 2 + F 2rmax · (x 2 + z 2 )  a)
      W
      n 2m =
      n 2b · t b + … + n 2n · t n
      t b + … + t n
      L h10 =
      16666
      n 2m
      K1 2
      M 2km
      ·
      p 2
      Consult us
      yes
      no
      F 2am =
      |n 2b | · t b · |F 2ab | 3 + … + |n 2n | · t n | · F 2an | 3
      |n 2b | · t b + … + |n 2n | · t n
      3
      F 2rm =
      |n 2b | · t b · |F 2rb | 3 + … + |n 2n | · t n | · F 2rn | 3
      |n 2b | · t b + … + |n 2n | · t n
      3
      Calculate the average
      tilting torque M 2km [Nm] or [in.lb]
      Calculate the maximum
      tilting torque M 2kmax [Nm] or [in.lb]
      Calculate the average speed
      n 2m [rpm]
      Select a larger
      gearhead
      Calculate lifespan
      L h10 [h]
      Is the lifespan L h10
      sufficient?
      Calculation of bearing lifespan
      complete
      Select a larger
      gearhead
      a) x
      2 , y 2 , z 2 in mm or in
      no
      no
      yes
      [ ]
      420
      alpha
      Information
      TP + /TPK + SP + /SPK +
      LP + /LPB +
      LPK +
      alphira ? (CP)
      f 0.37 0.40 0.24 0.24
      LP + /LPB + /LPK + 050 070  090  120  155
      z 2
      [mm] 20 28.5 31 40 47
      [in] 0.79 1.12 1.22 1.58 1.85
      K1 2
      [Nm] 75 252 314 876 1728
      [in.lb] 664 2230 2779 7753 15293
      p 2 3 3 3 3 3
      alphira ? (CP) 040 060 080 115
      z 2
      [mm] 12.5 19.5 23.5 28.5
      [in] 0.49 0.77 0.93 1.12
      K1 2
      [Nm] 15.7 70.0 157.0 255.0
      [in.lb] 139 620 1389 2257
      p 2 3 3 3 3
      SP + /SPK + 060 075 100 140 180 210 240
      z 2
      [mm] 42.2 44.8 50.5 63.0 79.2 94.0 99.0
      [in] 1.66 1.76 1.99 2.48 3.12 3.70 3.90
      K1 2
      [Nm] 795 1109 1894 3854 9456 15554 19521
      [in.lb] 7036 9815 16762 34108 83686 137653 172761
      p 2 3.33 3.33 3.33 3.33 3.33 3.33 3.33
      TP + /TPK + 004 010 025 050 110 300 500 2000 4000
      z 2
      [mm] 57.6 82.7 94.5 81.2 106.8 140.6 157 216 283
      [in] 2.27 3.26 3.72 3.20 4.21 5.48 6.12 8.50 11.1
      K1 2
      [Nm] 536 1325 1896 4048 9839 18895 27251 96400 184000
      [in.lb] 4744 11726 16780 35825 87075 167220 241171 853140 1628400
      p 2 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33
      TK + /SK + /HG + /LK + : Calculation using cymex ? .
      Please contact us for further information.
      Example with output shaft and flange:
      metric inch
      W 1000 1
      421
      M 3k = F 3a · y 3 +F 3r · (x 3 +z 3 )
      Gearhead types and sizes
      TK + 004
      SK + 060
      HG + 060
      SPK + 075
      TPK + 010
      TPK + 025 MA
      TK + 010
      SK + 075
      HG + 075
      SPK + 100
      TPK + 025
      TPK + 050 MA
      Dimensions of rearward drive
      Solid shaft diameter ?D k6 mm 16 16 22 22 
      Solid shaft length L  mm 28 ±0.15 28 ±0.15 36 ±0.15 36 ±0.15 
      Hollow shaft interface outer diameter ?D h8 mm 18 18 24 24 
      Hollow shaft interface inner diameter ?d h6 mm 15 15 20 20 
      Hollow shaft interface length L hw mm 14 14 16 16 
      Distance from input axis A  mm 42.9 42.9 52.6 52.6 
      Key dimensions
      (E = key as per DIN 6885,
      sheet 1, form A)
      l  mm 25 25 32 32 
      b h9 mm 5 5 6 6 
      a  mm 2 2 2 2 
      h  mm 18 18 24.5 24.5 
      Output shaft threaded bore B M5x12.5 M5x12.5 M8x19 M8x19 
      Permissible load of rearward drive
      Max. acceleration torque  c) T 3B = T 2B - T 2b
      Please contact us
      = T 2B - T 2b
      Please contact us
      Nominal output torque  c) T 3N = T 2N - T 2n = T 2N - T 2n 
      EMERGENCY STOP torque  c) T 3Not = T 2Not - T 2not = T 2Not - T 2not 
      Max. axial force  b) F 3Amax 1,500 1,500 1,800 1,800 
      Max. radial force  b) F 3Rmax 2,300 2,300 3,000 3,000 
      Max. tilting torque M 3Kmax 60 60 100 100 
      Calculation of average tilting torque at the rearward drive
      Factor for tilting torque calculation z 3 mm 11.9 11.9 15.6 15.6 
      Distance between axial force
      and center of gearhead
      y 3 mm Application-dependent 
      Distance between lateral force
      and shaft collar
      x 3 mm Application-dependent 
      Hypoid – Detailed sizing
      a) Connection via shrink discs (see from page 410)
      b) Refers to center of shaft
      c) Index as small letter = existing value (application-dependent);
      index as capital letter = permissible value
      (see catalog values from page 150)
      Solid shaft with key Rearward drive:
      422
      alpha
      Information
      TK + 025
      SK + 100
      HG + 100
      SPK + 140
      TPK + 050
      TPK + 110 MA
      TK + 050
      SK + 140
      HG + 140
      SPK + 180 SPK + 240
      TPK + 110 TPK + 500
      TPK + 300 MA
      TK + 110
      SK + 180
      HG + 180
      SPK + 210
      TPK + 300
      TPK + 500 MA
      32 32 40 40 55 55
      58 ±0.15 58 ±0.15 82 ±0.15 82 ±0.15 82 ±0.15 82 ±0.15
      36 36 50 50 68 68
      30 30 40 40 55 55
      20 20 25 25 25 25
      63.5 63.5 87 87 107.8 107.8
      50 50 70 70 70 70
      10 10 12 12 16 16
      4 4 5 5 6 6
      35 35 43 43 59 59
      M12x28 M12x28 M16x36 M16x36 M20x42 M20x42
      = T 2B - T 2b
      Please contact us
      = T 2B - T 2b
      Please contact us
      = T 2B - T 2b
      Please contact us = T 2N - T 2n = T 2N - T 2n = T 2N - T 2n
      = T 2Not - T 2not = T 2Not - T 2not = T 2Not - T 2not
      2,000 2,000 9,900 9,900 4,000 4,000
      3,300 3,300 9,500 9,500 11,500 11,500
      150 150 580 580 745 745
      16.5 16.5 20 20 23.75 23.75
      Application-dependent
      Application-dependent
      Hollow shaft interface a) Hollow shaft
      No connection possible
      Closed cover
      No connection possible
      423
      Modular system matrix "Output type"
      S K + _ 1 0 0 B – M F 1 – 7 – D E 1 / motor
      Type code: B = Modular output combination
      S = Standard
      Output shaft shape
      HG + /SK + /SPK + /TK + /TPK +
      When selecting an output combination from the modular system, please select the letter "B" as the type code in the order
      code. The digit for the required type of output is the modular matrix system.
      Example: If you opt for an SK + with a smooth shaft and require an additional output in the form of a keywayed output shaft,
      then select the letter "G" and enter in the order key under "Output shaft shape".
      Smooth shaft Keywayed shaft Hollow shaft interface Hollow shaft Cover
      SK + / SPK +
      Smooth shaft
      D G A - 0*
      Keywayed shaft
      E H B - 1*
      Involute
      F I C - 2*
      SPK +
      Attachable shaft
      O P N - 5*
      TK +
      Flanged hollow shaft
      D G 6 5* 0
      TPK +
      Flanged hollow shaft
      D G 6 - 0*
      HG +
      Hollow shaft
      D G 6* 5* 0
      Backward
      Front
      Output type
      * Standard version: please specify type code "S" in the order code
      424
      alpha
      Information
      425
      0 1 100 1
      1000 1,3 80 0,94
      3000 1,9 60 0,86
      6000 2,2 40 0,74
      10000 2,3 20 0,56
      VD 040 VD 050
      4 7 10 16 28 40 4 7 10 16 28 40
      0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53
      0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53
      0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,56 0,61 0,53
      0,64 0,89 0,96 0,88 0,96 0,84 0,57 0,75 0,78 0,86 0,95 0,79
      1,03 1,15 1,24 1,29 1,40 1,25 0,89 1,16 1,22 1,16 1,28 1,23
      VD 063 VD 080
      4 7 10 16 28 40 4 7 10 16 28 40
      0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,53 0,54 0,57 0,64 0,53
      0,53 0,53 0,53 0,56 0,65 0,57 0,7 0,82 0,8 0,83 0,88 0,78
      0,76 0,95 0,94 0,99 1,06 1,01 0,9 1,12 1,1 1,28 1,37 1,2
      1 1,11 1,23 1,32 1,42 1,38 1,22 1,58 1,57 1,88 2,03 1,78
      1,44 1,56 1,74 1,9 2,07 2,03 1,66 1,78 1,79 2,16 2,35 2,06
      VD 100
      4 7 10 16 28 40
      0,62 0,7 0,72 0,73 0,79 0,69
      0,79 0,93 0,98 0,99 1,09 0,94
      1,18 1,3 1,4 1,44 1,62 1,53
      1,83 1,96 2,16 2,24 2,56 2,46
      - - - - - -
      V-Drive – Detailed sizing
      Select a gearhead
      Select a larger
      gearhead
      1) Mechanical T 2Max * ≥ T 2b · f s
      2) Thermal T 2Max * ≥ T 2b · f e · f t
      Gearhead selection
      complete
      T 2Max * = Max. permissible torque at gearhead
      T 2b Process torque
      * For applications with maximum precision requirements throughout lifespan, T 2Servo should be used
      Ratios i = 28 and i = 40 are self-locking at zero speed.
      The self-locking state may be overcome and therefore the gearhead should not replace a brake.
      For applications that run at a continuous speed of 3000 rpm or more and a temperature of > 30 °C
      in installation position D, E or G, please contact us.
      Cycles per hour Load factor f s
      Duty cycle for
      each hour (DC%)
      f e for duty cycle
      Temperature factor f t
      Ratio
      n 1N =  500 rpm
      n 1N = 1,000 rpm
      n 1N = 2,000 rpm
      n 1N = 3,000 rpm
      n 1N = 4,000 rpm
      Ratio
      n 1N =  500 rpm
      n 1N = 1,000 rpm
      n 1N = 2,000 rpm
      n 1N = 3,000 rpm
      n 1N = 3,500 rpm
      Ratio
      n 1N =  500 rpm
      n 1N = 1,000 rpm
      n 1N = 2,000 rpm
      n 1N = 3,000 rpm
      n 1N = 4,000 rpm
      no yes
      426
      alpha
      Information
      Index “2”  = ^ output
      Bearing lifespan L h10 (output bearing)
      M 2 k max ≤ M 2 K Max
      F 2 r max ≤ F 2 R Max
      F 2 a max ≤ F 2 A Max
      Calculate the average axial and radial
      force F 2am , F 2rm [N]
      F 2am
      F 2rm
      ≤ 0.4
      x 2 > 0
      F 2am =
      n 2b · t b · F 2ab 3 + … + n 2n · t n · F 2an 3
      n 2b · t b + … + n 2n · t n
      3
      F 2rm =
      n 2b · t b · F 2rb 3 + … + n 2n · t n · F 2rn 3
      n 2b · t b + … + n 2n · t n
      3
      M 2km =
      F 2am · y 2 + F 2rm · (x 2 + z 2 )
      W
      Z 2 [mm] VDT +
      VDH + /VDHe/
      VDSe
      VDS +
      VD 040 - 57.25 -
      VD 050 104 71.5 92.25
      VD 063 113.5 82 111.5
      VD 080 146.75 106.25 143.25
      VD 100 196 145.5 181
      M 2 k max =
      F 2 a max · y 2 + F 2 r max · (x 2 + z 2 )
      W
      Type VD 040 VD 050 VD 063 VD 080 VD 100
      M 2K Max [Nm] 205 409 843 1,544 3,059
      F 2R Max [N] 2,400 3,800 6,000 9,000 14,000
      F 2A Max [N] 3,000 5,000 8,250 13,900 19,500
      Calculate the average
      tilting torque M 2k m [Nm]
      Calculate the maximum
      tilting torque M 2k max [Nm]
      Calculate the average
      speed n 2 m [rpm]
      n 2 m =
      n 2 b · t b + … + n 2 n · t n
      t b + … + t n
      K1 2 [Nm] VDT +
      VDH + /VDHe/
      VDSe
      VDS +
      VD 040 - 1,230 -
      VD 050 3,050 2,320 2,580
      VD 063 4,600 3,620 5,600
      VD 080 9,190 9,770 10,990
      VD 100 20,800 15,290 20,400
      Calculate
      lifespan L h10 [h]
      P t T/H/S
      i = 4 1.5
      i = 7 0.72
      i = 10 0.6
      i = 16 0.5
      i = 28 0.4
      i = 40 0.36
      L h10 =
      16666
      n 2m
      K1 2
      p t · T 2m + M 2km
      · [ ]
      3.33
      Gearhead selection
      complete
      Is the lifespan L h10
      sufficient?
      Select a larger
      gearhead
      Please contact us!
      yes
      no
      no
      yes
      yes no
      Output (VDT + -, VDH + -, VDHe-, VDS + - & VDSe- version)
      VDS + involute
      VDS + / VDSe
      smooth, keywayed
      VDH +  /VDHe
      smooth
      VDT +
      VDH +  /VDHe
      keywayed
      metric
      W 1,000
      T 2m =
      |n 2b | · t b · |T 2b | 3 + … + |n 2n | · t n · |T 2n | 3
      |n 2b | · t b + … + |n 2n | · t n
      3
      Speed
      Cycle duration
      Time
      Time
      (Start/Stop/Event)
      Force
      427
      <1000 1,0
      <2000 1,1
      <3000 1,2
      <4000 1,8
      >4000 2,0
      Z h =
      3600 [s/h]
      (t b + t c + t d + t e )
      T 2b, fsB < T B
      T Dis max ≤ T B
      Coupling – Detailed sizing
      Calculate the number of cycles Z h [1/h]
      Torque limiter
      (TL1, TL2, TL3)
      Metal bellows coupling
      (EC2, BC2, BC3, BCH, BCT)
      The max. speed range of the coupling must be adhered to:
      n max ≤ n Max
      (in the event of other requirements, please request the finely balanced version)
      Select a larger coupling
      Select a larger coupling
      Set precise disengage-
      ment torque T Dis
      Calculate the load factor for metal
      bellows and torque limiters f sB
      (see table 1)
      Calculate the max. acceleration torque
      at the output including the load factor
      T 2b ,f sB [Nm]
      Coupling type
      yes
      yes
      no
      no
      Table 1: Load factor Metal bellows and torque limiters
      f sB is dependent on Z h
      (table 1)
      T 2b = depends on the application
      T 2b,  f sB = T 2b · f s
      T B = Max. acceleration torque
      of coupling (max. 1000 cycles
      per hour)
      T Dis = Depends on the application: Please
      set the precise disengagement torque
      (preset by WITTENSTEIN alpha) above
      the maximum application load and below
      the maximum transferable disengage-
      ment torque of torque limiter T Dis max
      within the selected adjustment range,
      in order to protect the drive components
      Metal bellows and torque limiters – Detailed sizing
      (EC2, BC2, BC3, BCH, BCT, TL1, TL2, TL3)
      Number of cycles Z h [1/h] Load factor f sB
      428
      alpha
      d W1/ 2 min.  ≥ D 1/2 Min
      d  W1/ 2 max.  ≤ D 1/2 Max
      f e =
      1
      2 · π
      [Hz]
      J A + J L
      J A · J L
      C T  ·
      Information
      Select larger coupling, adapt load
      shaft or clamping system
      Comparison of load shaft diameter on drive and output side d W1/2 with the bore hole diameter area of coupling D 1/2
      Detailed sizing of metal bellows and torque limiters complete
      yes
      no
      d W1  = Drive-side shaft diameter (motor/gearhead)
      d W2 = Output-side shaft diameter (application)
      d W1/2 min.  = Min. shaft diameter (drive/output)
      d W1/2 max.  = Max. shaft diameter (drive/output)
      D 1/2 Min  = Min. bore diameter of coupling
      D 1/2 Max  = Max. bore diameter of coupling
      Note:
      The resonant frequency of the coupling must be higher or lower than the
      machine frequency. For the purpose of calculation, the drive is reduced to
      a two-mass system:
      Maximum misalignments:
      Permissible values (axial, angular, lateral) for shaft misalignments must be adhered to
      EMERGENCY STOP torque:
      If there is a need for the transmission of EMERGENCY STOP situations, it is recommended to use torque
      limiters (TL1, TL2 and TL3) in order to protect further drive components and to increase the overall service life.
      Models EC2, BC2, BC3 and BCH can briefly transmit 1.5 times the T B of the coupling, provided all the other
      instructions are complied with (see T Emer ).
      For torque limiters with the "Load holding version" functional system, double load safety is ensured for the TL1 cou-
      pling (indirect drives), while an adequate size must be ensured for the TL2 and TL3 models with bellows attachment:
      Blocking load < T B of the coupling!
      C T = Torsional rigidity of coupling  [Nm/rad]
      f e = Natural frequency of 2-mass system [Hz]
      f er = Excitation frequency of drive  [Hz]
      J L = Moment of inertia of machine  [kgm 2 ]
      J A  = Moment of inertia on drive side  [kgm 2 ]
      Best practices in sizing: f e ≥ 2 x f er Two-mass system
      Coupling
      Drive Machine
      Clamping hub
      (EC2, BC2, BCT,
      BCH, TL1, TL2)
      Torque transmitted in case of
      identical diameter
      Adapt hub shape in case of identical diameter
      Conical clamping hub
      (BC3, TL1, TL3)
      Positive connection
      (key shape A DIN 6885,
      involute DIN 5480)
      429
      <1000 1,0
      <2000 1,2
      <3000 1,4
      <4000 1,8
      >4000 2,0
      A B C
      A B C
      1,5 1,7 1,4
      1,0 1,0 1,0
      1,2 1,1 1,3
      1,4 1,3 1,5
      1,7 1,5 1,8
      2,0 1,8 2,1
      - 2,4 -
      EL6 ELC
      T 2n x f tE  ≤ T NE *
      Z h =
      3600 [s/h]
      (t b + t c + t d + t e )
      T 2b,fsE,ftE  = T 2b · f sE · f tE
      T 2b,fsE,ftE ≤ T BE T 2b,fsE,ftE ≤ T BE*
      Coupling – Detailed sizing
      Select larger coupling, different
      elastomer ring or bore diameter
      Select larger coupling or
      different elastomer ring
      Calculate the rated torque of the
      application T 2n [Nm]
      Calculate the temperature factor f tE
      (see table 1)
      Calculate the number of cycles Z h [1/h]
      Calculate the load factor of elastomer
      couplings f sE
      (see table 2)
      Calculate the max. acceleration torque at
      the output including the temperature fac-
      tor and load factor for elastomer couplings
      T 2b,fsE,ftE [Nm]
      Coupling model
      yes
      no
      no no
      Table 2: Load factor for elastomer couplings
      Table 1: Temperature factor for elastomer couplings dependent on
      elastomer ring and ambient temperature
      f sE The load factor of elastomer cou-
      plings is dependent on Z h (table 2)
      T 2n = Depends on the application
      f tE = The temperature factor for
      elastomer couplings is depen-
      dent on the elastomer ring and
      the ambient temperature at the
      coupling (see table 1)
      T NE * = Max. rated torque
      of elastomer ring
      * = The maximum torque transmitted
      by the ELC coupling is also depen-
      dent on the minimum bore diameter
      (please also compare with table on
      catalog page 401 ELC couplings)
      Elastomer couplings – detailed sizing (EL6, ELC)
      Number of cycles Zh [1/h] Impact factor f sE
      T 2b = depends on the application
      T BE = max. acceleration torque of
      elastomer
      (max. 1000 cycles per hour)
      Temperature factor f tE Elastomer ring
      Temperature [°C]
      > -30 to -10
      > -10 to +30
      > +30 to +40
      > +40 to +60
      > +60 to +80
      > +80 to +100
      > +100 to +120
      Transmittable torque
      (qualitative)
      Elastomer ring type
      The max. speed range of the coupling must be adhered to:
      n max ≤ n Max
      (in the event of other requirements, please request the finely balanced version)
      430
      alpha
      d W1/ 2 min.  ≥ D 1/2 Min
      d  W1/ 2 max.  ≤ D 1/2 Max
      f e =
      1
      2 · π
      [Hz]
      J A + J L
      J A · J L
      C T  ·
      Information
      Select larger coupling, adapt load
      shaft or clamping system
      Detailed sizing of elastomer couplings complete
      Comparison of load shaft diameter on drive and output side d  W 1/ 2 with the bore hole diameter area of coupling D 1/2
      yes
      no
      d W1  = Drive-side shaft diameter (motor/gearhead)
      d W2 = Output-side shaft diameter (application)
      d W1/2 min.  = Min. shaft diameter (drive/output)
      d W1/2 max.  = Max. shaft diameter (drive/output)
      D 1/2 Min  = Min. bore diameter of coupling
      D 1/2 Max  = Max. bore diameter of coupling
      Note:
      The max. speed range of the coupling must be adhered to:
      n max ≤ n Max (in the case of other requirements, please request the finely balanced version)
      Emergency stop torque: Dimensioning does not take emergency stop torques into consideration.
      Instead, please regard the required emergency stop torque as the maximum torque of the application.
      Maximum misalignments:
      Permissible values (axial, angular, lateral) for shaft misalignments must be adhered to
      Smooth shaft
      Transmittable torque (qualitative)
      Adapt clamping system in the event
      of identical diameter
      Positive connection
      (key shape A DIN 6885,
      involute DIN 5480)
      The resonant frequency of the coupling must be higher or lower than the
      machine frequency. For the purpose of calculation, the drive is reduced
      to a two-mass system:
      Best practices in sizing: f e ≥ 2 x f er Two-mass system
      Coupling
      Drive Machine
      C T = Torsional rigidity of coupling  [Nm/rad]
      f e = Natural frequency of
      2-mass system  [Hz]
      f er = Excitation frequency of drive  [Hz]
      J L = Moment of inertia of machine  [kgm 2 ]
      J A  = Moment of inertia on drive side  [kgm 2 ]
      φ =
      Transmission errors due to a torsional load
      on the metal bellows (EC2, BC2, BC3,
      BCH, BCT, TL2 und TL3):
      φ = angle of turn  [degrees]
      C T = torsional rigidity of coupling  [Nm/rad]
      T 2b = max. available acceleration torque  [Nm]
      Based on angle of torsion
      [degrees]
      180
      π
      ·
      T 2b
      C T
      431
      Example with output shaft and flange:
      Bushing
      Clamping hub
      Motor shaft
      Glossary
      The  alpha bet
      Acceleration torque (T 2B )
      The acceleration torque T 2B is the
      maximum permissible torque that can
      briefly be transmitted at the output by
      the gearhead after ≤ 1000/h cycles. For
      > 1000/h cycles, the ??Shock factor
      must be taken into account. T 2B is the
      limiting parameter in cyclic operation.
      Adapter plate
      WITTENSTEIN alpha uses a system of
      standardized adapter plates to connect
      the motor and the gearhead, making
      it possible to mount an WITTENSTEIN
      alpha gearhead to any desired motor
      without difficulty.
      Angular minute
      A degree is subdivided into 60 angular
      minutes (= 60 arcmin = 60’). In other
      words, if the torsional backlash is
      specified as 1 arcmin, for example,
      the output can be turned 1/60°. The re-
      percussions for the actual application
      are determined by the arc length:
      b = 2 · π · r · α° / 360°. A pinion with a
      radius r = 50 mm on a gearhead with
      standard torsional backlash j t = 3’ can
      be turned b = 0.04 mm.
      Axial force (F 2AMax )
      In the case of SP + /LP + /SPK + , the axial
      force F 2AMax acting on a gearhead runs
      parallel to its output shaft. On a TP + ,
      the force runs perpendicular to its
      output shaft. It may be applied with axi-
      al offset via a lever arm y 2 under certain
      circumstances, in which case it also
      generates a bending moment.
      If the axial force exceeds the permissi-
      ble catalogue values, additional design
      features (e.g. axial bearings) must be
      implemented to absorb these forces.
      Bushing
      If the motor shaft diameter is smaller
      than the ??clamping hub, a bushing
      is used to compensate the difference
      in diameter.
      Clamping hub
      The clamping hub ensures a frictional
      connection between the motor shaft
      and gearhead. A ??bushing is used
      as the connecting element if the motor
      shaft diameter is smaller than that of the
      clamping hub.
      Continuous operation (S1)
      Continuous operation is defined by
      the ??duty cycle. If the duty cycle is
      greater than 60 % and/or longer than
      20 minutes, this qualifies as continuous
      operation. ??Operating modes
      Cyclic operation (S5)
      Cyclic operation is defined via
      the ??duty cycle. If the duty cycle
      is less than 60 % and shorter than
      20 minutes, it qualified as cyclic
      operation (??operating modes).
      cymex ?
      cymex ? is the calculation software de-
      veloped by our company for dimensio-
      ning complete drive trains. We can also
      provide training to enable you to make
      full use of all the possibilities provided
      by the software.
      Degree of protection (IP)
      The various degrees of protection are de-
      fined in DIN EN 60529 “Degrees of pro-
      tection offered by enclosure (IP code)”.
      The IP degree of protection (IP stands
      for International Protection) is represen-
      ted by two digits. The first digit indicates
      the protection against the ingress of
      impurities and the second the protection
      against the ingress of water.
      Duty cycle (ED)
      The duty cycle ED is determined by
      one cycle. The times for acceleration
      (t b ), constant travel if applicable (t c ) and
      deceleration (t d ) combined yield the duty
      cycle in minutes. The duty cycle is ex-
      pressed as a percentage with inclusion
      of the pause time t e .
      Efficiency (η)
      Efficiency [%]  η is the ratio of out-
      put power to input power. Power lost
      through friction reduces efficiency
      to less than 1 or 100 %.
      η  = P out / P in = (P in – P lost ) / P in
      WITTENSTEIN alpha always measures
      the efficiency of a gearhead during ope-
      ration at full load (T 2B ). If the input power
      or torque are lower, the efficiency rating
      is also lower due to the constant no-load
      torque. Power losses do not increase as
      a result. Speed also has an effect on effi-
      ciency, as shown in the example diagram
      above.
      Emergency stop torque (T 2Not )
      The emergency stop torque [Nm] T 2Not
      is the maximum permissible torque at
      the gearhead output and must not be
      reached more than 1000 times during
      the life of the gearhead. It must never
      be exceeded!
      ??Refer to this term for further details.
      Example: IP65
      Protection against
      impurities
      (Dust resistance)
      Protection
      against water
      ED [%] =
      t b + t c + t d
      t b + t c + t d + t e
      Motion duration
      Cycle duration
      ED [min] = t b + t c + t d
      · 100
      432
      alpha
      Information
      * 50%
      Test torque
      T [Nm]
      ?
      T
      ?
      ?
      ?? [arcmin]
      ? [arcmin]
      Backlash (defined)
      -T [Nm]
      Ex symbol
      Devices bearing the Ex symbol com-
      ply with EU Directive 94/9/EC (ATEX)
      and are approved for use in defined
      explosion-hazardous zones
      Detailed information on explosion
      groups and categories, as well as
      further information on the relevant gear-
      head are available upon request.
      HIGH SPEED (MC)
      The HIGH SPEED version of our SP +
      gearhead has been specially developed
      for applications in continuous operation
      at high input speeds, e.g. as found in
      the printing and packaging industries.
      HIGH TORQUE (MA)
      The HIGH TORQUE version of our TP +
      gearhead has been specially developed
      for applications requiring extremely high
      torques and maximum rigidity.
      MA = HIGH TORQUE
      MC = HIGH SPEED
      MF = standard versions of our
      WITTENSTEIN alpha servo gearheads
      Hysteresis curve
      The hysteresis is measured to deter-
      mine the torsional rigidity of a gearhead.
      The result of this measurement is known
      as the hysteresis curve.
      If the input shaft is locked, the gearhead
      is loaded with a torque that increases
      continuously up to T 2B and is then
      relieved at the output in both directions.
      The torsional angle is plotted against the
      torque. This yields a closed curve from
      which the ??torsional backlash and
      ??torsional rigidity can be calculated.
      Jerk
      Jerk is derived from acceleration and
      is defined as the change in acceleration
      within a unit of time. The term impact is
      used if the acceleration curve changes
      abruptly and the jerk is infiniy large.
      Lateral force (F R )
      Lateral force is the force component
      acting at right angles to the output shaft
      with the SP + /LP + /SPK + or parallel to
      the output flange with the TP + . It acts
      perpendicular to the axial force and can
      assume an axial distance of x 2 in relation
      to the shaft nut with the SP + /LP + ) or
      shaft flange with the TP + , which acts as
      a lever arm. The lateral force produces
      a bending moment (see also axial force).
      Mass moment of inertia (J)
      The mass moment of inertia J is a
      measurement of the effort applied by an
      object to maintain its momentary condi-
      tion (at rest or moving).
      Mesh frequency (f z )
      The mesh frequency may cause
      problems regarding vibrations in an
      application, especially if the excitation
      frequency corresponds to the intrinsic
      frequency of the application.
      The mesh frequency can be calculated
      for all SP + , TP + , LP + and alphira ? gear-
      heads using the formula f Z = 1,8 · n 2 [rpm]
      and is therefore independent of the ratio
      if the output speed is the same.
      If it does indeed become problematic,
      the intrinsic frequency of the system
      can be changed or another gearhead
      (e.g. hypoid gearhead) with a different
      mesh frequency can be selected.
      NSF symbol
      Lubricants certified as grade H1 by
      the NSF (NSF = National Sanitation
      Foundation) can be used in the food
      sector where occasional unavoidable
      contact with food cannot be excluded.
      433
      Glossary
      No load running torque (T 012 )
      The no load running torque T 012 is
      the torque which must be applied
      to a gearhead in order to overcome the
      internal friction; it is therefore consi-
      dered lost torque. The values specified
      in the catalog are calculated by
      WITTENSTEIN alpha at a speed of
      n 1 = 3000 rpm and an ambient tempera-
      ture of 20 °C.
      Nominal torque (T 2N )
      The nominal torque [Nm] T 2N is the torque
      continuously transmitted by a gearhead
      over a long period of time, i.e. in ??conti-
      nuous operation (without wear).
      Operating modes
      (continuous operation S1 and
      cyclic operation S5)
      When selecting a gearhead, it is important
      to consider whether the motion profile is
      characterized by frequent acceleration and
      deceleration phases in cyclic operation
      (S5) as well as pauses, or whether it is
      designed for continuous operation (S1),
      i.e. with long phases of constant motion.
      Operating noise (L PA )
      Low noise level L PA is a factor of growing
      importance for environmental and health
      reasons. WITTENSTEIN alpha has suc-
      ceeded in reducing the noise of the new
      SP + gearheads by another 6 dB(A) over
      the former SP units (i.e. sound reduced
      to one quarter). Noise levels are now
      currently 64 - 70 dB(A) depending on
      the size of the gearhead.
      The gear ratio and speed both affect
      the noise level. The relationships are de-
      monstrated in the following trend graphs.
      As a general rule: A higher speed
      means a higher noise level, while
      a higher ratio means a lower noise level.
      The values specified in our catalog
      relate to gearheads with the ratio
      i = 10/100 at a speed of n = 3000 rpm.
      Positioning accuracy
      The positioning accuracy is determined
      by the angular deviation from a setpoint
      and equals the sum of the torsional
      angles due to load ??(torsional rigidity
      and torsional backlash) and kinetics
      ??(synchronization error) occurring
      simultaneously in practise.
      Rate of mass moment
      of inertia (λ = Lambda)
      The ratio of mass moment of inertia λ is
      the ratio of external inertia (application
      side) to internal inertia (motor and gear-
      head side). It is an important parameter
      determining the controllability of an
      application. Accurate control of dynamic
      processes becomes more difficult with
      differing mass moments of inertia and
      as λ becomes greater. WITTENSTEIN
      alpha recommends that a guideline
      value of λ < 5 is maintained. A gearhead
      reduces the external mass moment of
      inertia by a factor of 1/i 2 .
      J external reduced to the gear input:
      J′ external = J external / i2
      Simple applications ≤ 10
      Dynamic applications ≤ 5
      Highlydynamic applications ≤ 1
      Ratio (i)
      The gear ratio i indicates the factor by
      which the gearhead transforms the three
      relevant parameters of motion (speed,
      torque and mass moment of inertia).
      The factor is a result of the geometry of
      the gearing elements (Example: i = 10).
      Safety notice
      If your application has to meet special
      safety requirements (e.g. vertical axes,
      tensioned drives), we recommend using
      exclusively our alpheno ? , RP + , TP + and
      TP + HIGH TORQUE products or contact
      WITTENSTEIN alpha for advice.
      Shock factor (f s )
      The maximum permissible acceleration
      torque during cyclic operation specified
      in the catalog applies for a cycle rate less
      than 1000/h. Higher cycle rates com-
      bined with short acceleration times can
      cause vibrations in the drive train. Use
      the shock factor f s to include the resulting
      excess torque values in calculations.
      The shock factor f s can be determined
      with reference to the curve. This calcula-
      ted value is multiplied by the actual ac-
      celeration torque T 2b and then compared
      with the maximum permissible accelera-
      tion torque T 2B . (T 2b · f s = T 2b, fs < T 2B )
      Speed (n)
      Two speeds are of relevance when
      dimensioning a gearhead: the maximum
      speed and the nominal speed at the
      input. The maximum permissible speed
      n 1Max must not be exceeded because
      it serves as the basis for dimensioning
      T 012 : 0 1? 2
      no load  from input end
      to output end
      λ =
      J external
      J internal
      n 1 = 3000 rpm
      T 1 = 20 Nm
      J 1 = 0.10 kgm 2
      T 2 = 200 Nm
      n 2 = 300 rpm
      J 2 = 10 kgm 2
      (Application)
      :i
      ·i
      :i 2
      0
      45
      SP classic
      SP +
      Speed n [rpm]
      Operating noise L PA [d(BA)]
      -6 d(BA)
      Number of cycles per hour
      Shock factor
      434
      alpha
      Information
      0 500 1000 1500 2000 2500 3000 3500 4000 4500
      100
      90
      80
      60
      40
      20
      0
      Rated input speed n 1N [rpm]
      Housing temperature [°C]
      Ambient temperature of 20°C
      Ambient temperature of 40°C
      Housing limit temperature
      ° Rated speed at 20 C
      Rated speed at 40°C
      Diference
      T = 20°C
      ??cyclic operation. The nominal
      speed n 1N must not be exceeded in
      ??continuous operation.
      The housing temperature limits the
      nominal speed, which must not ex-
      ceed 90 °C. The nominal input speed
      specified in the catalogue applies to
      an ambient temperature of 20 °C. As
      can be seen in the diagram below,
      the temperature limit is reached more
      quickly in the presence of an ele-
      vated outside temperature. In other
      words, the nominal input speed must
      be reduced if the ambient tempera-
      ture is high. The values applicable
      to your gearhead are available from
      WITTENSTEIN alpha on request.
      Synchronization error
      The synchronization error is equal
      to the variations in speed measured
      between the input and output during
      one revolution of the output shaft. The
      error is caused by manufacturing to-
      lerances and results in minute angular
      deviations and fluctuations in ratio.
      T 2Max
      T 2Max means the maximum torque
      which can be transmitted by the gear-
      box.
      This value can be chosen for applica-
      tions that can accept a slight increase
      in backlash over time.
      T 2Servo
      T 2Servo is a special value for preci-
      sion applications in which a mini-
      mum backlash must be guaran-
      teed over the life of the gearbox.
      The increase in backlash seen in
      other worm gears is less due to the
      optimized hollow flank teeth.
      Technical data
      The technical data relating to our
      products can be downloaded from
      our homepage. Alternatively, you can
      send your requests, suggestions and
      comments to the address below.
      Tilting moment (M 2K )
      The tilting torque M 2K is a result of the
      ??axial and lateral forces applied
      and their respective points of appli-
      cation in relation to the inner radial
      bearing on the output side.
      Timing belt
      The AT profile of the Wittenstein
      standard belt pulley is a flank-cen-
      tered profile for backlash-free torque
      transmission.
      Effective diameter
      d0 = Number of teeth z x Pitch p / Pi
      Recommended preload per strand for
      linear drives Fv ≥ Fu
      Radial force at the output shaft for the
      determination of the bearing life:
      Fr = 2 x Fv
      Torque (M)
      The torque is the actual driving force
      of a rotary motion. It is the product of
      lever arm and force. M = F · l
      Torsional backlash (j t )
      Torsional backlash j t is the maximum
      angle of torsion of the output shaft
      in relation to the input. Torsional
      backlash is measured with the input
      shaft locked.
      The output is then loaded with a defined
      test torque in order to overcome the in-
      ternal gearhead friction. The main factor
      affecting torsional backlash is the face
      clearance between the gear teeth. The
      ??Refer to this term for further details.
      Backlash
      low torsional backlash of WITTENSTEIN
      alpha gearheads is due to their high
      manufacturing accuracy and the specific
      combination of gear wheels.
      Torsional rigidity (C t21 )
      Torsional rigidity [Nm/arcmin] C t21 is
      defined as the quotient of applied
      torque and generated torsion angle
      (C t21 = ?T/?φ). It consequently shows
      the torque required to turn the output
      shaft by one angular minute. The tor-
      sional rigidity can be determined from
      the ??hysteresis curve. Only the
      area between 50 % and 100 % of T 2B
      is considered for because this area of
      the curve profile can be considered
      linear.
      Torsional rigidity C , Torsion angle Φ
      Reduce all torsional rigidities to the
      output:
      C (n),output = C (n),input * i2
      with i = Gear ratio [ - ]
      C (n)  = single stiffness [Nm/arcmin]
      Note: the torsional rigidity C t21 of the
      gearbox always relates to the output.
      Series connection of torsional rigidities
      1/C ges = 1/C 1,output +1/C 2,output + …+ 1/C (n)
      Torsion angle Φ [arcmin]
      Φ = T 2 * 1/C ges
      with T 2 = Output torque [Nm]
      WITTENSTEIN alpha
      speedline ?
      If required, we can deliver a new
      SP + ,TP +  or LP +  within 24 or 48 hours
      ex works.
      435
      Glossary
      Formulae
      Torque [Nm] T = J · α
      J = Mass moment of inertia [kgm 2 ]
      α = An [1/s 2 ]
      Torque [Nm] T = F · I
      F = Force [N]
      l = Lever, length [m]
      Acceleration force [N] F b = m · a
      m = Mass [kg]
      a = Linear acceleration [m/s 2 ]
      Frictional force [N] F frict = m · g · μ
      g = Acceleration due to gravity 9.81 m/s 2
      μ = Coefficient of friction
      Angular velocity [1/s] ω = 2 · π · n / 60
      n = Speed [rpm]
      π = PI = 3.14...
      Linear velocity [m/s] v = ω · r
      v = Linear velocity [m/s]
      r = Radius [m]
      Linear velocity [m/s] (spindle) v sp = ω · h / (2 · π) h = Screw pitch [m]
      Linear acceleration [m/s 2 ] a = v / t b
      t b  = Acceleration time [s]
      Angular acceleration [1/s 2 ] α = ω / t b
      Pinion path [mm]  s = m n · z · π / cos β
      m n = Standard module [mm]
      z = Number of teeth [-]
      β = Inclination angle [°]
      Conversion table
      1 mm = 0.039 in
      1 Nm = 8.85 in lb
      1 kgcm 2 = 8.85 x 10 -4 in.lb.s 2
      1 N = 0.225 lb f
      1 kg = 2.21 lb m
      436
      alpha
      Information
      Symbols
      Symbol Unit Designation
      C Nm/arcmin Rigidity
      ED %, min Duty cycle
      F N Force
      f s – Shock factor
      f t – Temperature factor
      f e – Factor for duty cycle
      i – Ratio
      j arcmin Backlash
      J kgm 2 Moment of inertia
      K1 Nm Factor for bearing calculation
      L h Service life
      L PA dB(A) Operating noise
      m kg Mass
      M Nm Torque
      n rpm Speed
      p – Exponent for bearing calculation
      η  % Efficiency
      t s Time
      T Nm Torque
      v m/min Linear velocity
      x mm
      Distance between lateral force
      and shaft collar
      y mm
      Distance between axial force and
      center of gearhead
      z mm Factor for bearing calculation
      Z 1/h Number of cycles
      Index
      Capital letter Permissible values
      Small letter Actual values
      1 Drive
      2 Output
      3
      Rearward drive
      (for hypoid gearheads)
      A/a Axial
      B/b Acceleration
      c Constant
      cym
      cymex ? values (load-related
      characteristic values)
      d Deceleration
      e Pause
      h Hours
      K/k Tilting
      m Mean
      Max/max Maximum
      Mot Motor
      N Nominal
      Not/not Emergency stop
      0 No load
      R/r Radial
      t Torsional
      T Tangential
      437
      Order information
      Gearhead type
      TP + 004 – TP + 4000
      SP + 060 – SP + 240
      Gearhead type
      TK + 004 – TK + 110
      TPK + 010 – TPK + 500
      SK + 060 – SK + 180
      SPK + 075 – SPK + 240
      HG + 060 – HG + 180
      SC + 060 – SC + 180
      SPC + 060 – SPC + 180
      TPC + 004 – TPC + 110
      Gearhead type
      LP + 050 – LP + 155
      LPB + 070 – LPB + 120
      Type code
      S = Standard
      A = Optimized mass
      moment of inertia  b)
      E = Version in ATEX  b)
      F = Food-grade lubrication  b)
      G = Grease  b)
      L = Low friction (SP + 100 -
      240 HIGH SPEED)
      W = Corrosion resistant  b)
      Type code
      S = Standard
      B = Modular output combi-
      nation (SK + , SPK + , TK + ,
      TPK + , HG + )  c)
      E = Version in ATEX  b) d)
      F = Food-grade lubrication  b)
      W = Corrosion resistant  b)
      Type code
      S = Standard
      F = Food lubrication
      Number of stages
      1 = 1-stage
      2 = 2-stage
      3 = 3-stage
      Number of stages
      1 = 1-stage
      2 = 2-stage
      3 = 3-stage
      4 = 4-stage
      Number of stages
      1 = 1-stage
      2 = 2-stage
      Gearhead model
      F = Standard
      A = HIGH TORQUE
      (only TP + )
      C = HIGH SPEED (only SP + )
      Gearhead model
      F = Standard
      A = HIGH TORQUE
      (only TPK + )
      Gearhead model
      F = Standard
      Gearhead variations
      M = Motor attachment
      gearhead
      S = Separate version
      Gearhead variations
      M = Motor attachment
      gearhead
      Gearhead variations
      M = Motor attachment
      gearhead
      Gearhead type
      LK 050 – LK 155
      LPK 050 – LPK 155
      LPBK 070 – LPBK 120
      CP 040 – CP 115
      (alphira ? )
      Ratios
      See technical data sheets.
      Number of stages
      1 = 1-stage
      2 = 2-stage
      3 = 3-stage (LPK + )
      Gearhead model
      O = Standard
      L = Food-grade grease
      Gearhead variations
      M = Motor attachment
      gearhead
      Gearhead type
      VDT = TP flange
      VDH = hollow shaft
      VDS = shaft
      Gearhead version
      e = economy
      (only for VDH and
      VDS, size 040, 050
      and 063)
      Number of stages
      1 = 1-stage
      Distance between
      axes
      040, 050, 063, 080,
      100
      Gearhead model
      F = Standard
      L = Food-grade
      lubrication
      W = Corrosion resistant
      Gearhead variations
      M = Motor attachment
      gearhead
      a) Order shrink discs separay, see section accessories, shrink discs on page 410
      b) Reduced specification available on request
      a) Order shrink discs separay, see section accessories, shrink discs on page 410
      b) Reduced specification available on request
      c) See modular system matrix, page 424
      d) SK + /TK + /HG + only
      ** See section accessories, shrink discs on page 410
      438
      Output shape
      0 = smooth shaft/flange
      1 = shaft with key
      2 = involute to DIN 5480
      3 = system output
      4 = other
      5 = Shaft mounted (SP + ) a)
      Output shape
      0 = smooth shaft/flange
      (no hollow shaft)
      1 = shaft with key
      2 = involute to DIN 5480
      3 = system output
      4 = other
      5 = Hollow shaft interface / Flanged
      hollow shaft (TK + ) a)
      Shaft mounted (SPK + /SPC + ) a)
      6 = 2 hollow shaft interfaces (HG + ) a)
      (see technical data sheets)
      Output shape
      0 = Smooth shaft/flange
      1 = Shaft with key
      Backlash
      1 = Standard
      0 = Reduced
      (see technical
      data sheets)
      Backlash
      1 = Standard
      0 = Reduced
      (see technical
      data sheets)
      Backlash
      1 = Standard
      (see technical
      data sheets)
      Backlash
      1 = Standard
      Clamping hub bore hole diameter
      1 = Standard
      (see technical data sheets)
      Ratios
      4 (not for economy sizes
      050 and 063)
      7
      10
      16
      28
      40
      Backlash
      1 = Standard
      0 = Reduced
      Clamping hub bore hole
      diameter
      2 = 14 mm (040)
      3 = 19 mm (040, 050)
      4 = 28 mm (063)
      5 = 35 mm (080)
      7 = 48 mm (100)
      Output shape
      0 = smooth shaft/flange
      1 = shaft with key
      2 = involute to DIN 5480 (VDS + )
      4 = other (see technical data sheets)
      8 = Dual-shaft output, smooth
      (VDS + , VDSe)
      9 = Dual-shaft output with key
      (VDS + , VDSe)
      Ratios
      See technical data sheets.
      Ratios
      See technical data sheets.
      Ratios
      See technical data sheets.
      X = Special model
      X = Special model
      X = Special model
      X = Special model
      Clamping hub bore hole
      diameter
      (see technical data sheets
      and clamping hub diameter
      table)
      Clamping hub bore hole
      diameter
      (see technical data sheets
      and clamping hub diameter
      table)
      Clamping hub bore hole
      diameter
      (see technical data sheets
      and clamping hub diameter
      table)
      VDH – number of shrink
      discs**
      0 = no shrink disc
      1 = one shrink disc
      2 = two shrink discs
      Output shape
      0 = Smooth shaft
      (for LP + only)
      1 = Shaft with key
      LPBK +
      1 = Centering on output side
      Installation
      on motor side
      S = Push-on
      sleeve
      K = Coupling
      Installation
      on motor side
      S = Push-on
      sleeve
      K = Coupling
      Installation
      on motor side
      S = Push-on
      sleeve
      K = Coupling
      S P _ _ 1 0 0 S – M F 1 – 7 – 0 E 1 – 2S / Motor*
      S K _ _ 1 0 0 S – M F 1 – 7 – 0 E 1 – 1K / Motor*
      L P K _ 1 2 0 – M O 2 – 7 – 1 1 1 – / Motor*
      Order codes
      TP + /SP +
      TK + /TPK + /SK + /SPK + /HG + /SC + /SPC + /TPC +
      Gearhead type
      Gearhead type
      Gearhead type
      Type code
      Type code
      Type code
      Gearhead variations
      Gearhead variations
      Gearhead variations
      Gearhead model
      Gearhead model
      Gearhead model
      Number of stages
      Number of stages
      Number of stages
      Ratios
      Ratios
      Ratios
      Output shaft shape
      Output shaft shape
      Output shaft shape
      Clamping hub
      bore hole diameter
      Clamping hub
      bore hole diameter
      Clamping hub
      bore hole diameter
      Backlash
      Backlash
      Backlash
      Gearhead type Gearhead variations
      Gearhead model
      Number of stages
      Ratios
      Output shaft shape
      Clamping hub bore
      hole diameter
      Backlash
      LP + /LPB +  Generation 3
      LK + /LPK + /LPBK + /CP (alphira ? )
      V-Drive
      Gearhead type
      Gearhead model
      Number of stages
      Ratios
      Output shaft shape
      Clamping hub
      bore hole diameter
      Backlash
      Mounting position (see overview)
      VDH – number
      of shrink discs
      V D H e 0 5 0 – M F 1 – 7 – 0 3 1 – A C 0 / Motor*
      L P _ _ 0 9 0 S – M F 1 – 5 – 0 G 1 – 3S / Motor*
      Gearhead
      version
      Gearhead
      variations
      Distance
      between axes
      * Full motor designation only required for determining gearhead attached components!
      * Full motor designation only required for determining gearhead attached components!
      440
      AC AF AD AG AE
      BC BF BD BG BE
      Mounting positions and clamping hub diameters
      B5 – horizontal V1 – vertical
      Output shaft
      downwards
      V3 – vertical
      Output shaft
      upwards
      S – can be tilted
      ± 90° from a horizontal
      position
      Clamping hub diameter
      (the technical data sheet contains all diameters available for
      TP + , SP + , TK + ,TPK + , SK + , SPK + , SC + , SPC + , TPC + , HG + and LP +  models)
      Code letter mm
      B 11
      C 14
      D 16
      E 19
      G 24
      H 28
      Code letter mm
      I 32
      K 38
      L 42
      M 48
      N 55
      O 60
      Coaxial gearheads
      TP + 2000/4000: Please contact WITTENSTEIN alpha
      Intermediate diameters possible in combination with a bushing
      with a minimum thickness of 1 mm.
      B5/V3
      Output shaft, horizontal
      Motor shaft upwards
      B5/V1
      Output shaft, horizontal
      Motor shaft downwards
      V1/B5
      Output shaft, vertical
      Motor shaft, horizontal
      V3/B5
      Output shaft, vertical, upwards
      Motor shaft, horizontal
      B5/B5
      Output shaft, horizontal
      Motor shaft, horizontal
      Right-angle gearheads
      For information purposes only – not required
      when placing orders!
      Permitted standard mounting positions for right-
      angle gearheads (see illustrations)
      If the mounting position is different, contact
      WITTENSTEIN alpha
      Output side A:
      View of motor interface
      Only valid for VDS + , VDSe
      and VDT +
      Output side B:
      View of motor interface
      Only valid for VDS + , VDSe
      und VDT +
      Mounting position (only relevant for oil volume)
      For VDH + , VDHe and VDS + /VDSe with Dual-shaft output, A and B must be replaced with 0 (zero).
      Worm gearheads
      Premium Class + and Value Class pinion
      Premium Class RTP and Standard Class RSP pinions
      Order information
      Rack and assembly jig
      Length
      100 = Assembly jig (module 2 – 3)
      156 = Assembly jig (module 4 – 6)
      480 = Smart Class (module 2 – 4)
      167/333 = Premium Class (module 2)
      250 = Premium Class (module 3)
      500 = Premium Class (module 2 – 6)
      1000 = Value Class (module 2 – 6)
      Version
      PA5 = Premium Class
      HE6 = Performance Class
      VB6 = Value Class
      PD5 = Assembly jig
      Module
      200 = 2.00
      300 = 3.00
      400 = 4.00
      500 = 5.00
      600 = 6.00
      Rack type
      ZST = Rack
      ZMT = Assembly jig
      Number of teeth
      (see technical data sheet)
      Version
      PC5 = Premium Class
      VC6 = Value Class
      Module
      200 = 2.00
      300 = 3.00
      400 = 4.00
      500 = 5.00
      600 = 6.00
      Designation
      RMT = Pinion mounted ex
      works
      RMX = Pinion mounted
      offset 180°
      (for VC pinions only)
      Designation
      RSP = Standard Class RSP
      pinion for SP
      Involute output as per
      DIN 5480
      RTP = Premium Class RTP
      pinion for TP output
      RTPA = Premium Class RTP
      pinion for TP High
      Torque output
      Module
      A02 = 2.00
      A03 = 3.00
      A04 = 4.00
      A05 = 5.00
      A06 = 6.00
      Tolerance class
      5e24 = Premium Class RTP/
      RTPA
      6e25 = Standard Class RSP
      Gearhead size
      For SP output:
      060, 075, 100, 140, 180,
      210, 240
      For TP output:
      004, 010, 025, 050, 110,
      300, 500
      (see technical
      data sheets)
      Number of teeth
      (see technical data sheet)
      Torque limiter, bellows coupling and elastomer coupling
      Internal diameter D 1
      (drive side)
      TL1: D 1 = D 2
      BCT: D 1 = Output side
      Disengagement torque
      Torque limiter
      T Dis [Nm]
      (see technical
      data sheets for torque
      limiter)
      Bore version D 2
      0 = Smooth
      1 = Key shape A
      DIN 6885
      2 = Involute DIN 5480
      (on request)
      3 = Key shape A
      ANSI B17.1
      A = Hole circle
      BCT HIGH TORQUE
      Torque limiter (TL)
      adjustment range
      A = First series
      B = Second series
      C = Third series
      D = Fourth series
      (for TL1 only)
      Internal diameter D 2
      (output side)
      TL1: D 1 = D 2
      BCT: D 2 = TP + flange
      hole circle
      Bore version D 1
      0 = Smooth
      1 = Key shape A
      DIN 6885
      2 = Involute DIN 5480
      (on request)
      3 = Key shape A
      ANSI B17.1
      Series
      (see technical data sheets)
      Torque limiter (TL) function
      W = Single position (360°)
      D = Multi-position (60°)
      G = Load holding
      F = Full disengagement
      Metal bellows coupling
      function (BC, EC)
      A = Standard
      B = incl. self-opening clamp
      system (EC2)
      Elastomer coupling function (EL)
      A = Standard
      Length option
      A = First length
      B = Second length
      Elastomer ring option
      A = 98 Sh A
      B = 64 Sh D
      C = 80 Sh A
      Model
      Torque limiter
      TL1 / TL 2 / TL3
      Metal bellows coupling
      BCT  /  BCH  /  BC2  /  BC3  /
      EC2
      Elastomer coupling
      ELC / EL6
      442
      R T P A 0 2 5 – A 0 2 – 5 e 2 4 – 0 4 0
      Order codes
      Rack type Version Length Module
      Premium Class + and Value Class pinion
      Designation Version Number of teeth Module
      Premium Class RTP and Standard Class RSP pinions
      Designation Module Number of teeth Gearhead size Tolerance class
      Z S T _ 2 0 0 – P A 5 – 5 0 0
      R M T _ 2 0 0 – V C 6 – 1 8
      Torque limiter
      Bellows coupling
      Elastomer coupling
      T L 1 – 0 0 0 1 5 A W 1 6, 0 0 0 – 1 6, 0 0 0 – A 0 0 1 6
      B C T – 0 0 0 1 5 A A 0 1 2, 0 0 0 – 0 3 1, 5 0 0
      E L C – 0 0 0 2 0 A A 0 1 5, 0 0 0 – 0 1 6, 0 0 0
      Model
      Model
      Model
      Series
      Series
      Series
      Length option
      Length option
      Elastomer ring option
      Function
      Function
      Function
      D 1  Internal diameter, drive
      D 1  Internal diameter, drive
      (for BCT: Output)
      D 1  Internal diameter, drive
      Bore version D 1
      Bore version D 1
      Bore version D 1
      D 2  Internal diameter, output
      D 2  Internal diameter, output
      (for BCT: TP + flange hole circle)
      D 2  Internal diameter, output
      Bore version D 2
      Bore version D 2
      (for BCT Standard: 0)
      (for BCT HIGH TORQUE: A)
      Bore version D 2
      Adjustment
      range
      Disengagement
      torque T Dis
      443
      Technical changes reserved
      WITTENSTEINalpha_Components_&_Systems_Catalog_en_2015_I
      WITTENSTEIN alpha – inligent drive systems
      alpha
      Central:
      24h-Service-Hotline: 
      speedline ? : 

      WITTENSTEIN alpha GmbH
      Walter-Wittenstein-Stra?e 1
      97999 Igersheim
      Germany



      會員登錄

      ×

      請輸入賬號

      請輸入密碼

      =

      請輸驗證碼

      收藏該商鋪

      X
      該信息已收藏!
      標(biāo)簽:
      保存成功

      (空格分隔,最多3個,單個標(biāo)簽最多10個字符)

      常用:

      提示

      X
      您的留言已提交成功!我們將在第一時間回復(fù)您~
      產(chǎn)品對比 二維碼

      掃一掃訪問手機(jī)商鋪

      對比框

      在線留言