国产强伦姧在线观看无码,中文字幕99久久亚洲精品,国产精品乱码在线观看,色桃花亚洲天堂视频久久,日韩精品无码观看视频免费

      產品|公司|采購|資訊

      多功能植物光合表型成像測量系統

      參考價面議
      具體成交價以合同協議為準
      • 公司名稱慧諾瑞德(北京)科技有限公司
      • 品       牌
      • 型       號
      • 所  在  地北京市
      • 廠商性質其他
      • 更新時間2024/3/25 19:10:43
      • 訪問次數112
      產品標簽:

      在線詢價收藏產品 點擊查看電話

      聯系我們時請說明是 智能制造網 上看到的信息,謝謝!

      慧諾瑞德(北京)科技有限公司(PhenoTrait)是一家以植物表型為核心的AIoT+DT技術公司,是國家企業(yè)、中關村企業(yè)和全國科技型中小企業(yè)。公司利用智能感知、多源多維多譜視覺技術、人工智能、自動化和物聯網技術,為大范圍、高通量獲取與農作物品質、產量、抗性相關的植物表型及環(huán)境數據提供系統解決方案,為智慧育種、智慧種植和產業(yè)鏈賦能。表型組是基因組之后生命科學研究和產業(yè)應用的又一戰(zhàn)略制高點?;壑Z瑞德,用表型之“瞳”,筑科研之基,拓產業(yè)之路,賦農業(yè)之慧。 公司是國際植物表型學會(IPPN)會員,創(chuàng)始人韓志國博士是IPPN執(zhí)委會成員、工業(yè)分會副主席(2020-2024),也是我國“植物表型”這一細分市場的創(chuàng)建者。公司是亞太植物表型國際會議(APPPcon)發(fā)起單位和China Plant Phenotyping Network (CPPN)發(fā)起單位。公司先后榮登2020國際未來農業(yè)食品榜生物農業(yè)TOP20。和2022國際未來農業(yè)食品榜種業(yè)創(chuàng)新TOP20。 公司旗下的學術公眾號“植物表型資訊”,已成為華人植物表型圈影響力的公眾號;公司參與發(fā)起的“百博智慧大講堂”,已成為國內的線上學術講座平臺之一。
      土壤電導率儀
      多功能植物光合表型成像測量系統PlantExplorer采用創(chuàng)新的多光譜葉綠素熒光/可見光成像技術,利用的LED技術、CCD技術、通信技術,實現了對植物表型的創(chuàng)新測量,可以在獲取RGB成像、葉綠素成像、花青素成像的同時,獲取葉綠素熒光成像(成像面積53cmx53cm)
      多功能植物光合表型成像測量系統 產品信息

       

      多功能植物光合表型成像測量系統PlantExplorer采用創(chuàng)新的多光譜葉綠素熒光/可見光成像技術,利用的LED技術、CCD技術、通信技術,實現了對植物表型的創(chuàng)新測量,可以在獲取RGB成像、葉綠素成像、花青素成像的同時,獲取葉綠素熒光成像(成像面積53cm x 53cm)。系統包括帶光學濾光輪的CCD成像系統、聚焦系統、嵌入式高亮度紅光LED、光譜白光LED、多光譜LED、嵌入式電腦和觸摸屏。由于采用一個CCD加濾光輪的組合,使得能夠在像素水平上進行圖像疊加計算。

       

      多功能植物光合表型成像測量系統PlantExplorer包括三個版本:標準版PlantExplorer、高級版本PlantExplorerPro和適合高達120cm植物的版本PlantExplorerPro+。三個版本都可以選配GFP和/或RFP成像模塊(需在購買時指出,不可后續(xù)升級),其中PlantExplorer可以在購買后,再后續(xù)升級成PlantExplorerPro。

       

       

      功能特性

      • 創(chuàng)新的多功能植物光合表型平臺
      • 可見光成像+多光譜成像+葉綠素熒光(調制和非調制)成像
      • 同一個相機采集所有成像
      • 全自動馬達聚焦系統,帶全景和微距聚焦程序
      • 出色的高清相機(1.3 M pixel)測量葉綠素熒光
      • 高信噪比葉綠素熒光成像
      • 高質量10 Mp鏡頭,帶光譜可見光和近紅外涂層
      • 無可見鏡頭畸變,無需圖像校正
      • 濾光片可提供10個濾光片位置
      • 大景深設計
      • 成像范圍53 x 53cm
      • 可進行多光譜測量,精確獲知葉綠素熒光、葉綠素、花青素和R/G/B圖像每個像素的變化
      • 自動計算熒光參數和表型參數
      • 可設置進行延時成像測量
      • 嵌入式電腦進行精確的成像、時間控制、光強控制和數據存儲
      • 系統配置觸摸屏顯示器
      • 功能強大的控制和分析軟件

       

      選購指南

       

        

      主要技術參數

      • 相機傳感器類型:CCD
      • 相機分辨率:130萬像素
      • 圖像獲取時間:單張葉綠素熒光圖像20-1 000 us
      • 圖像格式:16位RAW格式
      • 光譜范圍:350~1000 nm
      • 激發(fā)光強度:25cm處,1500-6000 umol m-2 s-1;60cm處,800-3500 umol m-2 s-1。強度可調。
      • 光化光強度: 60cm處,100-600 umol m-2 s-1。強度可調。
      • 光學濾光片(適用于多光譜版):6種高質量光學干涉濾光片,包括熒光、紅光、綠光、藍光、花青素和近紅外濾光片
      • 成像面積:53 x 53 cm
      • 成像和計算的參數:Fo成像、Fm成像、Ft成像、Ft=5min成像、Fm’成像、Fv/Fm成像、Fq’成像、ΦPSII成像、ΦRO成像、NPQ100成像、qN成像、qP成像、Rfd100成像、 NDVI成像、RNIR成像、RChl成像.、RAnth成像、RRed成像、RGreen成像、RBlue成像、葉綠素指數成像、花青素指數成像和可見光成像,能夠自動計算投影葉面積、Fv/Fm平均值、低于Fv/Fm的面積百分比、ΦPSII平均值、低于ΦPSII的面積百分比、NPQ100平均值、高于NPQ100的面積百分比、Rfd100平均值、低于Rfd100的面積百分比、平均RGB比值、特殊RGB比值的面積百分比、平均葉綠素指數、低于葉綠素指數的面積百分比、平均花青素指數、低于花青素指數的面積百分比等(具體參數取決于版本),以及凸包、最小外接圓、最小外接矩形等相關表型參數。

       

      應用舉例

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

       

      利用PhenoVation光合表型成像技術發(fā)表的部分文獻

      1. Casto A L, Schuhl H, Schneider D, et al. (2021) Analyzing chlorophyll fluorescence images in PlantCV. Earth and Space Science Open Archive:5. https://doi.org/10.1002/essoar..2
      2. Wang L, Liu F, Hao X, et al. (2021) Identification of the QTL-allele System Underlying Two High-Throughput Physiological Traits in the Chinese Soybean Germplasm Population. Frontiers in Genetics, https://doi.org/10.3389/fgene.2021.600444
      3. Farooq M, van Dijk A D J, Nijveen H, et al. (2021) Prior Biological Knowledge Improves Genomic Prediction of Growth-Related Traits in Arabidopsis thaliana. Frontiers in Genetics, 11:609117. doi: 10.3389/fgene.2020.609117
      4. He Y, Li Y, Yao Y et al. (2021) Overexpression of watermelon m6A methyltransferase ClMTB enhances drought tolerance in tobacco by mitigating oxidative stress and photosynthesis inhibition and modulating stress-responsive gene expression. Plant Physiology and Biochemistry, 168: 340-352.
      5. Wang W, Liu D, Qin M et al. (2021) Effects of Supplemental Lighting on Potassium Transport and Fruit Coloring of Tomatoes Grown in Hydroponics. International Journal of Molecular Sciences, 22(5): 2687 https://doi.org/10.3390/ijms
      6. Singh R R, Pajar J A, Audenaert K, et al. (2021) Induced Resistance by Ascorbate Oxidation Involves Potentiating of the Phenylpropanoid Pathway and Improved Rice Tolerance to Parasitic Nematodes. Frontiers in Plant Science, 12:713870. doi: 10.3389/fpls.2021.713870
      7. Vidak M, Lazarevic B, Petek M, et al. (2021) Multispectral Assessment of Sweet Pepper (Capsicum annuum L.) Fruit Quality Affected by Calcite Nanoparticles. Biomolecules, 11(6), 832; https://doi.org/10.3390/biom
      8. Lazarevic B, Satovic Z, Nimac A, et al. (2021) Application of Phenotyping Methods in Detection of Drought and Salinity Stress in Basil (Ocimum basilicum L.). Frontiers in Plant Science, 12:629441. doi: 10.3389/fpls.2021.629441
      9. Romero-Perez A, Ameye M, Audenaert K, et al. (2021) Overexpression of F-Box Nictaba Promotes Defense and Anthocyanin Accumulation in Arabidopsis thaliana After Pseudomonas syringae Infection. Frontiers in Plant Science, 12:692606. doi: 10.3389/fpls.2021.692606
      10. Meng L, Mestdagh H, Ameye M, et al. (2021) Phenotypic variation of Botrytis cinerea Isolates is influenced by spectral light quality. Frontiers in Plant Science, 11:1233. doi: 10.3389/fpls.2020.01233
      11. De Zutter N, Ameye M, Debode J, et al. (2021) Shifts in the rhizobiome during consecutive in planta enrichment for phosphate-solubilizing bacteria differentially affect maize P status. Microbial Biotechnology, doi:10.1111/1751-7915.13824
      12. Stambuk P, Sikuten I, Preiner D, et al. (2021) Screening of Croatian Native Grapevine Varieties for Susceptibility to Plasmopara viticola Using Leaf Disc Bioassay, Chlorophyll Fluorescence, and Multispectral Imaging. Plants, 10, 661. https://doi.org/10.3390/plants
      13. Tan J, de Zutter N, de Saeger S, et al. (2021) Presence of the Weakly Pathogenic Fusarium poae in the Fusarium Head Blight Disease Complex Hampers Biocontrol and Chemical Control of the Virulent Fusarium graminearum Pathogen. Frontiers in Plant Science, https://doi.org/10.3389/fpls.2021.641890
      14. Flood P, Theeuwen T, Schneeberger K, Keizer P, Kruijer W, et al. (2020) Reciprocal cybrids reveal how organellar genomes affect plant phenotypes. Nature Plants, 10.1038/s41477-019-0575-9ff. ffhal-v2f
      15. Velivelli S L S, Czymmek K J, Li H, Shaw J B, Buchko G W, Shah D M. (2020) Antifungal symbiotic peptide NCR044 exhibits unique structure and multifaceted mechanisms of action that confer plant protection. PNAS, DOI: 10.1073/pnas.2003526117
      16. Bhatnagar N, Pandey S. (2020) Heterotrimeric G-Protein Interactions Are Conserved Despite Regulatory Element Loss in Some Plants. Plant Physiology, DOI: https://doi.org/10.1104/pp.20.01309
      17. Venneman J, Vandermeersch L, Walgraeve C et al. (2020) Respiratory CO2 Combined With a Blend of Volatiles Emitted by Endophytic Serendipita Strains Strongly Stimulate Growth of Arabidopsis Implicating Auxin and Cytokinin Signaling. Frontiers in Plant Science, https://doi.org/10.3389/fpls.2020.544435
      18. Tan J, Ameye M, Landschoot S et al. (2020) At the scene of the crime: New insights into the role of weakly pathogenic members of the fusarium head blight disease complex. Molecular Plant Pathology, DOI: 10.1111/mpp.12996
      19. Prinzenberg A E, Campos-Dominguez L, Kruijer W, Harbinson J, Aarts M G M. (2020) Natural variation of photosynthetic efficiency in Arabidopsis thaliana accessions under low temperature conditions. Plant Cell & Environment, 1–14. https://doi.org/10.1111/pce.13811
      20. Zhang H, Chen Y, Niu Y, Zhang X, Zhao J, Sun L, Wang H, Xiao J, Wang X. (2020) Characterization and fine mapping of a leaf yellowing mutant in common wheat. Plant Growth Regulation, https://doi.org/10.1007/s10725-020-00633-0
      21. Jin X, Zarco-Tejada P, Schmidhalter U, Reynolds M P et al. (2020) High-throughput estimation of crop traits: A review of ground and aerial phenotyping platforms. IEEE Geoscience and Remote Sensing Magazine, DOI: 10.1109/MGRS.2020.2998816
      22. Sheng X-G, Branca F, Zhao Z-Q et al. (2020) Identification of Black Rot Resistance in a Wild Brassica Species and Its Potential Transferability to Cauliflower. Argonomy, 10: 1400. doi:10.3390/agronomy
      23. Pennisi G, Blasioli S, Cellini A, Maia L, Crepaldi A, Braschi I, Gianquinto G. (2019). Unraveling the Role of Red:Blue LED Lights on Resource Use Efficiency and Nutritional Properties of Indoor Grown Sweet Basil. Frontiers in plant science, 10, 305. doi:10.3389/fpls.2019.00305
      24. Pennisi G, Orsini F, Blasioli S, Cellini A et al. (2019) Resource use efficiency of indoor lettuce (Lactuca sativa L.) ction as affected by red:blue ratio provided by LED lighting. Scientific Reports, 9, 14127
      25. Van Es S W, van der Auweraert E B, Silveira S R, Angenent G C, van Dijk A D J, Immink R G H. (2019) Comprehensive phenotyping reveals interactions and functions of Arabidopsis thaliana TCP genes in yield determination. The Plant Journal, doi: 10.1111/tpj.14326
      26. Köhl J, Goossen-van de Geijn H, Groenenboom-de Haas L, et al. (2019) Stepwise screening of candidate antagonists for biological control of Blumeria graminis f. sp. tritici. Biological Control, 136: 104008
      27. Mohd Nadzir M M, Vieira Lelis F M, Thapa B, Ali A, Visser R G F, van Heusden A W, van der Wolf J M. (2019) Development of an in vitro protocol to screen Clavibacter michiganensis subsp. michiganensis pathogenicity in different Solanum species. Plant Phathology, 68(1): 42-48
      28. Sall K, Dekkers B J W, Nonogaki M, Katsuragawa Y, Koyari R, Hendrix D, Willems L A J, Bentsink L, Nonogaki H. (2019) DELAY OF GERMINATION  1LIKE  4 acts as an inducer of seed reserve accumulation. The Plant Journal, 100: 7-19.
      29. Li H, Velivelli S L S, Shah D M. (2019) Antifungal Potency and Modes of Action of a Novel Olive Tree Defensin Against Closely Related Ascomycete Fungal Pathogens. Molecular Plant-Microbe Interactions. 32(12): 1646-1664.
      30. Prinzenberg A E, Viquez-Zamora M, Harbinson J, Lindhout P, van Heusden S. (2018) Chlorophyll fluorescence imaging reveals genetic variationand loci for a photosynthetic trait in diploid potato. Physiologia Plantarum, 164: 163-175.
      31. Van Rooijen R, Harbinson J, Aarts M G M. (2018) Photosynthetic response to increased irradiance correlates to variation in transcriptional response of lipidremodeling and heatshock genes. Plant Direct, 2(7): e00069
      32. Van Bezouw R F H M, Keurentjes J J B, Harbinson J, Aarts M G. (2018) Converging phenomics and genomics to study natural variation in plant photosynthetic efficiency. Plant Journal, 97(1): 112-133.
      33. Domazakis E, Wouters D, Visser R G F, Kamoun S, Joosten M H A J, Vleeshouwers V G A A. (2018) The ELR-SOBIR1 Complex Functions as a Two-Component Receptor-Like Kinase to Mount Defense Against Phytophthora infestans. Molecular Plant-Microbe Interactions, 31(8): 795-802.
      34. Bazakos C, Hanemian M, Trontin C, Jimenez-Gomez J M, Loudet O. (2017) New Strategies and Tools in Quantitative Genetics: How to Go from the Phenotype to the Genotype. Annual Review of Plant Biology, 68:435-455
      35. Van Rooijen R, Kruijer W, Boesten R, van Eeuwijk F A, Harbinson J, Aarts M G M. (2017) Natural variation of YELLOW SEEDLING1 affects photosynthetic acclimation of Arabidopsis thaliana. Nature Communications, 8: 1421
      36. Flood P J, Kruijer W, Schnabel S K, van der Schoor R, Jalink H, Snel J F H, Harbinson J, Aarts M G M. (2016) Phenomics for photosynthesis, growth and reflectance in Arabidopsis thaliana reveals circadian and long-term fluctuations in heritability. Plant Methods, 12: 14. https://doi.org/10.1186/s13007-016-0113-y
      37. Mancarella S, Orsini F, van Oosten M J, SAnoubar R, Stanghellini C, Kondo S, Gianquinto G, Maggio A. (2016) Leaf sodium accumulation facilitates salt stress adaptation and preserves photosystem functionality in salt stressed Ocimum basilicum. Environmental and Experimental Botany, 130: 162-173.
      38. Virlet N, Sabermanesh K, Sadeghi-Tehran P, Hawkesford M J. (2016) Field Scanalyzer: An automated robotic field phenotyping platform for detailed crop monitoring. Functional Plant Biology, 44(1): 143-153.
      39. Gorbe Sanchez E, Heuvelink E, de Gelder A, Stanghellini C. (2015) New Non-invasive Tools for Early Plant Stress Detection. Procedia Environmental Sciences, 29: 249-250.
      40. Kastelein P, Krijger M, Czajkowski R, van der Zouwen P S, van der Schoor R, Jalink H, van der Wolf J M. (2014) Development of Xanthomonas fragariae populations and disease progression in strawberry plants after sprayinoculation of leaves. Plant Pathology, 63(2): 255-263.
      41. Harbinson J, Prinzenberg A E, Kruijer W, Aarts M G M. (2012) High throughput screening with chlorophyll ?uorescence imaging and its use in crop improvement. Current Opinion in Biotechnology, 23:221
      在找 多功能植物光合表型成像測量系統 產品的人還在看
      返回首頁 產品對比

      提示

      ×

      *您想獲取產品的資料:

      以上可多選,勾選其他,可自行輸入要求

      個人信息:

      Copyright gkzhan.com , all rights reserved

      智能制造網-工業(yè)4.0時代智能制造領域“互聯網+”服務平臺

      對比欄