介電常數(shù)介質(zhì)損耗因數(shù)測試儀—介電常數(shù)與耗散因數(shù)間的關(guān)系
介電常數(shù)又稱電容率或相對電容率, 是表征電介質(zhì)或絕緣材料電 性能的一個重要數(shù)據(jù),常用 ε 表示。 介質(zhì)在外加電場時會產(chǎn)生感應 電荷而削弱電場,原外加電場(真空中)與最終介質(zhì)中電場比值即為介 電常數(shù)。其表示電介質(zhì)在電場中貯存靜電能的相對能力, 例如一個電 容板中充入介電常數(shù)為 ε 的物質(zhì)后可使其電容變大 ε 倍。介電常數(shù)愈 小絕緣性愈好。如果有高介電常數(shù)的材料放在電場中, 場的強度會在 電介質(zhì)內(nèi)有可觀的下降。介電常數(shù)還用來表示介質(zhì)的極化程度, 宏觀 的介電常數(shù)的大小, 反應了微觀的極化現(xiàn)象的強弱。氣體電介質(zhì)的極 化現(xiàn)象比較弱,各種氣體的相對介電常數(shù)都接近1 ,液體、固體的介 電常數(shù)則各不相同,而且介電常數(shù)還與溫度、電源頻率有關(guān)
有些物質(zhì)介電常數(shù)具有復數(shù)形式, 其實部即為介電常數(shù), 虛數(shù)部 分常稱為耗散因數(shù)。
通常將耗散因數(shù)與介電常數(shù)之比稱作耗散角正切, 其可表示材料 與微波的耦合能力, 耗散角正切值越大, 材料與微波的耦合能力就越 強。例如當電磁波穿過電解質(zhì)時,波的速度被減小,波長也變短了。
介質(zhì)損耗是指置于交流電場中的介質(zhì), 以內(nèi)部發(fā)熱的形式表現(xiàn)出 來的能量損耗。介質(zhì)損耗角是指對介質(zhì)施加交流電壓時, 介質(zhì)內(nèi)部流 過的電流相量與電壓向量之間的夾角的余角。介質(zhì)損耗角正切是對電 介質(zhì)施加正弦波電壓時, 外施電壓與相同頻率的電流之間相角的余角 δ 的正切值--tg δ. 其物理意義是:每個周期內(nèi)介質(zhì)損耗的能量//每個周期內(nèi)介質(zhì)存儲的能量。
介電損耗角正切常用來表征介質(zhì)的介電損耗。介電損耗是指電 介質(zhì)在交變電場中, 由于消耗部分電能而使電介質(zhì)本身發(fā)熱的現(xiàn)象。 原因是電介質(zhì)中含有能導電的載流子,在外加電場作用下,產(chǎn)生導電電 流,消耗掉一部分電能,轉(zhuǎn)為熱能。任何電介質(zhì)在電場作用下都有能量損耗,包括由電導引起的損耗和由某些極化過程引起的損耗。用 tg δ作為綜合反應介質(zhì)損耗特性優(yōu)劣的指標, 其是一個僅僅取 決于材料本身的損耗特征而與其他因素無關(guān)的物理量, tgδ的增大意 味著介質(zhì)絕緣性能變差, 實踐中通常通過測量 tgδ來判斷設(shè)備絕緣性 能的好壞。
由于介電損耗的作用電解質(zhì)在交變電場作用下將長生熱量, 這些 熱會使電介質(zhì)升溫并可能引起熱擊穿, 因此, 在絕緣技術(shù)中, 特別是 當絕緣材料用于高電場強度或高頻的場合,應盡量采用介質(zhì)損耗因 數(shù), 即電介質(zhì)損耗角正切 tgδ較低的材料。但是, 電介質(zhì)損耗也可用 作一種電加熱手段,即利用高頻電場(一般為0.3--300兆赫茲)對介 電常數(shù)大的材料(如木材、紙張、陶瓷等) 進行加熱。這種加熱由于 熱量產(chǎn)生在介質(zhì)內(nèi)部, 比外部加熱速度更快、熱效率更高, 而且熱均 勻。頻率高于300兆赫時,達到微波波段,即為微波加熱(家用微波 爐即據(jù)此原理)。
在絕緣設(shè)計時, 必須注意材料的 tgδ值。若 tgδ過大則會引起嚴 重發(fā)熱,使絕緣材料加速老化,甚至導致熱擊穿。
一下例舉一些材料的 ε 值:
石英-----3.8
絕緣陶瓷-----6.0
紙------70
有機玻璃------2.63
PE-------2.3
PVC--------3.8
高分子材料的 ε 由主鏈中的鍵的性能和排列決定
分子結(jié)構(gòu)極性越強, ε 和 tg δ越大。
非極性材料的極化程度較小, ε 和 tg δ都較小。
當電介質(zhì)用在不同場合時對介電常數(shù)與耗散因素的大小有不同 的要求。做電容介質(zhì)時 ε 大、 tg δ小;對航空航天材料而言, ε 要小 tg δ要大。
另外要注意材料的極性越強受濕度的影響越明顯。主要原因是高 濕的作用使水分子擴散到高分子的分子之間, 使其極性增強; 同時潮 濕的空氣作用于塑料表面, 幾乎在幾分鐘內(nèi)就使介質(zhì)的表面形成一層 水膜, 它具有離子性質(zhì), 能增加表面電導, 因此使材料的介電常數(shù)和 介質(zhì)損耗角正切 tgδ都隨之增大。故在具體應用時應注意電介質(zhì)的周 圍環(huán)境。
電介質(zhì)在現(xiàn)代生活中經(jīng)常被用到, 而介電常數(shù)與耗散因素是電介 質(zhì)的兩個重要參數(shù), 根據(jù)不同的要求, 應當選用具有不用介電常數(shù)與 耗散因數(shù)的材料, 以達到最佳的效果。同時還應當注意外界因素對介 電常數(shù)與耗散因數(shù)的影響。
介電常數(shù)介質(zhì)損耗因數(shù)測試儀
1、電介質(zhì)材料簡介
電介質(zhì)材料的體積儲能密度萬的表達式為:
圖1
上式中,ε為電介質(zhì)材料的相對介電常數(shù)?ε0為真空介電常數(shù)?為電介質(zhì)材料的擊穿場強。從表達式來看?提高電介質(zhì)材料儲能密度的途徑有兩種?一方面提高電介質(zhì)材料的介電常數(shù)?另一方面提高電介質(zhì)材料的擊穿場強?而擊穿場強的提高將顯著影響儲能密度的提高。
2、介電常數(shù)
介電常數(shù)用來表征電介質(zhì)材料貯存電荷能力的大小,?它定義為介質(zhì)電容器的電容Cx比真空電容器的電容C0增加的倍數(shù)。介電常數(shù)的表達式為:
圖2
上式中,ε為樣品的介電常數(shù)?。ε0為真空介電常數(shù)?C為試樣的電容值?S為電極面積?d為試樣的厚度。
介電常數(shù)實質(zhì)上是電介質(zhì)材料極化程度的宏觀物理量?隨著測試頻率和溫度的變化而變化?由電介質(zhì)材料自身的物化結(jié)構(gòu)決定。在電場作用下?如果電介質(zhì)自身的極化程度很高?極板上就會產(chǎn)生大量的感應電荷?那么材料表現(xiàn)出的介電常數(shù)就越大?鑒于此?對介電常數(shù)的考察研究?就要從電介質(zhì)材料本身在電場中的極化機制入手?從材料本身作為研究切入點?提高其介電常數(shù)?電介質(zhì)材料處于外加電場中時?主要有電子極化?原子極化?取向極化和空間電荷極化四種機制?弄清這四種極化機理?對提高介電常數(shù)的研究具有很好的指導意義?極化類型與頻率的關(guān)系。
1)電子極化
電介質(zhì)材料在電場作用下?原子中帶負電荷的電子云相對帶正電荷的原子核會發(fā)生相對運動?結(jié)果是原子核不再位于電子軌道的中心?這種情況稱為電子極化。電子極化發(fā)生在所有的材料中?所需的時間大約為10-15S?發(fā)生的頻率范圍為1014-1016Hz。
2)原子極化
電介質(zhì)材料在電場作用下?其分子中原子核的排列也會發(fā)生畸變?該過程被稱為原子極化。重的核運動要比電子運動遲鈍?因此原子極化不可能像電子極化一樣在很高頻下發(fā)生?原子極化所需的時間約為10-13S?發(fā)生的頻率范圍是1019-1013Hz。
電子極化和原子極化兩者都是在分子內(nèi)的正負電荷中心發(fā)生位移?或者可稱為分子形變和分子畸變?因此這些過程也可稱為位移的形變或者畸變?而所產(chǎn)生的偶極距被稱為誘導偶極距。
3)取向極化
電場作用下?電介質(zhì)分子中具有的yong久偶極距會由原來的雜亂無章變成排列有序的狀態(tài)?由此產(chǎn)生取向極化。這種極化一般需要一、?發(fā)生的頻率范圍是護。在不加外電場時?分子的熱運動會使偶極距雜亂無章?指向各個方向的機會均等?總的均偶極距仍然等于零?加上外電場?yong久偶極距會發(fā)生移動?沿著電場方向規(guī)則排列起來?從而發(fā)生取向極化。
4)界面極化
前面的三種極化是在均勻介質(zhì)中發(fā)生的,在非均相介質(zhì)中還存在界面極化,它是指非均勻介質(zhì)在電場的作用下電子或者離子堆積在非均相的交界處所表現(xiàn)的極化現(xiàn)象。界面極化可以看成是由缺陷偶極距形成的,缺陷偶極距就是在結(jié)構(gòu)缺陷處形成的偶極子,在非均相介質(zhì)中兩種物質(zhì)的交界面結(jié)構(gòu)是不均勻的,也認為是一種缺陷,在電場的作用下形成很大的偶極距,因為這種極化牽涉到很大的極化質(zhì)點,所以松弛時間較長,一般為10-4-104秒,發(fā)生的頻率范圍是10-5-102Hz。
各種極化機制的頻率范圍