主要特點(diǎn)
- 可進(jìn)行恒溫或變溫培養(yǎng)設(shè)定;
- 溫度控制波動(dòng)優(yōu)于±0.05℃;
- 平均升降溫速率不小于1°C/min;
- 150ml樣品瓶適配25位樣品盤;
- 具有CO2預(yù)降低的雙回路設(shè)計(jì);
- 一體化設(shè)計(jì),內(nèi)置CO2 H2O模塊;
- 可以外接濃度和同位素分析儀等。
研究領(lǐng)域
1)利用其自動(dòng)、連續(xù)、快速的特點(diǎn),開展區(qū)域尺度的聯(lián)網(wǎng)研究,揭示不同區(qū)域或植被類型的Q10變異及其控制機(jī)制。受傳統(tǒng)培養(yǎng)和測(cè)試方法的影響,研究人員很難開展類似的研究,雖然整合分析能一定程度解決這個(gè)問題,但也存在不同實(shí)驗(yàn)處理?xiàng)l件和實(shí)驗(yàn)測(cè)定方法造成的高不確定性問題。
2)開展Q10對(duì)連續(xù)溫度變化過程響應(yīng)研究,更真實(shí)的模擬溫度變化情況,從而揭示土壤微生物呼吸對(duì)溫度變化的響應(yīng)機(jī)制。受傳統(tǒng)方法的限制,當(dāng)前大多數(shù)研究均在小時(shí)、天、周尺度來(lái)開展,并沒有揭示真實(shí)的溫度日動(dòng)態(tài)。
3)更好地開展土壤微生物對(duì)水分或資源快速變化情景下的研究。例如,降水脈沖是干旱-半干旱區(qū)的常見現(xiàn)象,土壤微生物活性(碳礦化速率或氮礦化速率)對(duì)水分可獲得性的響應(yīng)一直是非常重要又挑戰(zhàn)性的科學(xué)問題;類似的,土壤微生物對(duì)外界資源脈沖式供應(yīng)的響應(yīng)或激發(fā)效應(yīng)也是近期研究熱點(diǎn)。
4) 隨著設(shè)備的廣泛使用與改進(jìn),尤其是與13C分析設(shè)備相結(jié)合,相信會(huì)在土壤有機(jī)質(zhì)周轉(zhuǎn)領(lǐng)域具有更多的應(yīng)用前景。
技術(shù)指標(biāo)
指標(biāo) | 標(biāo)準(zhǔn)配置參數(shù) |
培養(yǎng)瓶容積 | 150mL,耐高低溫玻璃瓶 |
樣品盤盤位 | 25位 |
瓶溫度范圍 | -20 ~ 60℃ |
溫度波動(dòng)度 | ±0.05℃ |
ACC溫度 | +40°C |
制冷量@20°C BT/20°C AT | 2000W |
平均升降溫速率(5-30°C) | 1℃/min |
內(nèi)膽尺寸(溫控內(nèi)腔) | 400 mm W × 400 mm D × 200 mm H(有效區(qū)域) |
自動(dòng)進(jìn)樣器控制精度 | 0.02 mm |
氣壓傳感器精度 | 0.05% |
溫度傳感器精度 | ±0.15℃ |
氣體流速 | 1L/min |
氣體管路 | 1/8不銹鋼管或特氟龍管 |
CO2吸收劑 | 堿石灰 |
通風(fēng) | 前面板上門底部進(jìn)風(fēng),后面板上部排風(fēng) |
外觀 | 落地式,前部萬(wàn)向輪,后部固定論 |
整機(jī)尺寸 | 762 mm W × 950 cm D × 1700 mm H |
電源 | 100 ~ 240VAC,50/60 Hz |
8800-1 CO2 H2O分析儀
性能指標(biāo) | |
CO2 測(cè)量范圍 | 0-2000 ppm |
CO2 準(zhǔn)確度 | ± 2% |
CO2零點(diǎn)穩(wěn)定性 | ± 2%(>12個(gè)月) |
CO2重復(fù)性@零點(diǎn) | ± 0.3% |
CO2重復(fù)性@跨度 | ± 1.5% |
CO2恒溫下的零點(diǎn)漂移 | ± 2% / 年 |
CO2常溫下的零點(diǎn)漂移 | ± 0.03% / ℃ |
H2O測(cè)量范圍 | 0~6% |
H2O準(zhǔn)確度 | ± 2% |
標(biāo)準(zhǔn)工作溫度 | -20 ~45 °C |
標(biāo)準(zhǔn)工作壓力 | 800 ~ 1150mbar |
取樣流速 | 標(biāo)準(zhǔn)1L/min,可調(diào) |
預(yù)熱時(shí)間 | 1min |
校準(zhǔn)頻率 | 建議12月校準(zhǔn)一次 |
濕度 | <99% R.H,無(wú)冷凝 |
配置說明
PRI-8800 實(shí)驗(yàn)設(shè)計(jì)
4)生物依賴性的研究:土壤呼吸包含土壤微生物呼吸(>90%)和土壤動(dòng)物呼吸(1-10%),土壤微生物群落對(duì)Q10影響重大。通過溫度響應(yīng)了解培養(yǎng)前后的微生物種群和數(shù)量的變化以及對(duì)應(yīng)的土壤呼吸速率的變化有重要意義。外源微生物種群的添加,或許幫助科學(xué)家找出更好的Q10對(duì)土壤生物依賴性的響應(yīng)解析。
PRI-8800 部分發(fā)表文章
2.Jiang ZX, Bian HF, Xu L, He NP. 2021. Pulse effect of precipitation: spatial patterns and mechanisms of soil carbon emissions. Frontiers in Ecology and Evolution, 9: 673310.
3.Liu Y, Xu L, Zheng S, Chen Z, Cao YQ, Wen XF, He NP. 2021. Temperature sensitivity of soil microbial respiration in soils with lower substrate availability is enhanced more by labile carbon input. Soil Biology and Biochemistry, 154: 108148.
4.Bian HF, Zheng S, Liu Y, Xu L, Chen Z, He NP. 2020. Changes in soil organic matter decomposition rate and its temperature sensitivity along water table gradients in cold-temperate forest swamps. Catena, 194: 104684.
5.Xu M, Wu SS, Jiang ZX, Xu L, Li MX, Bian HF, He NP. 2020. Effect of pulse precipitation on soil CO2 release in different grassland types on the Tibetan Plateau. European Journal of Soil Biology, 101: 103250.
6.Liu Y, He NP, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. 2019. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition. Soil Biology & Biochemistry, 138, 107596.
7.Liu Y, He NP, Wen XF, Xu L, Sun XM, Yu GR, Liang LY, Schipper LA. 2018. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biology and Biochemistry, 121: 35-42.
8.Liu Y, Wen XF, Zhang YH, Tian J, Gao Y, Ostle NJ, Niu SL, Chen SP, Sun XM, He NP. Widespread asymmetric response of soil heterotrophic respiration to warming and cooling. Science of Total Environment, 635: 423-431.
9.Wang Q, He NP, Xu L, Zhou XH. 2018. Important interaction of chemicals, microbial biomass and dissolved substrates in the diel hysteresis loop of soil heterotrophic respiration. Plant and Soil, 428: 279-290.
10.Wang Q, He NP, Xu L, Zhou XH. 2018. Microbial properties regulate spatial variation in the differences in heterotrophic respiration and its temperature sensitivity between primary and secondary forests from tropical to cold-temperate zones. Agriculture and Forest Meteorology, 262, 81-88.
11.Li J, He NP, Xu L, Chai H, Liu Y, Wang DL, Wang L, Wei XH, Xue JY, Wen XF, Sun XM. 2017. Asymmetric responses of soil heterotrophic respiration to rising and decreasing temperatures. Soil Biology & Biochemistry, 106: 18-27.
12.Liu Y, He NP, Xu L, Niu SL, Yu GR, Sun XM, Wen XF. 2017. Regional variation in the temperature sensitivity of soil organic matter decomposition in China’s forests and grasslands. Global Change Biology, 23: 3393-3402.
13.Wang Q, He NP*, Liu Y, Li ML, Xu L. 2016. Strong pulse effects of precipitation event on soil microbial respiration in temperate forests. Geoderma, 275: 67-73.
14.Wang Q, He NP, Yu GR, Gao Y, Wen XF, Wang RF, Koerner SE, Yu Q*. 2016. Soil microbial respiration rate and temperature sensitivity along a north-south forest transect in eastern China: Patterns and influencing factors. Journal of Geophysical Research: Biogeosciences, 121: 399-410.
15.He NP, Wang RM, Dai JZ, Gao Y, Wen XF, Yu GR. 2013. Changes in the temperature sensitivity of SOM decomposition with grassland succession: Implications for soil C sequestration. Ecology and Evolution, 3: 5045-5054.
16.何念鵬, 劉遠(yuǎn), 徐麗, 溫學(xué)發(fā), 于貴瑞, 孫曉敏. 2018. 土壤有機(jī)質(zhì)分解溫度敏感性研究:培養(yǎng)與測(cè)定模式. 生態(tài)學(xué)報(bào), 38: 4045-4051.
17.Mao X1, Zheng J1, Yu W, Guo X, Xu K, Zhao R, Xiao L, Wang M, Jiang Y, Zhang S, Luo L, Chang J, Shi Z, Luo Z* 2022. Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile. Soil Biology and Biochemistry 172, 108743.